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Introduction to First Edition


The opening session of the physics degree course at Imperial College includes an


introduction to vibrations and waves where the stress is laid on the underlying unity of


concepts which are studied separately and in more detail at later stages. The origin of this


short textbook lies in that lecture course which the author has given for a number of years.


Sections on Fourier transforms and non-linear oscillations have been added to extend the


range of interest and application.


At the beginning no more than school-leaving mathematics is assumed and more


advanced techniques are outlined as they arise. This involves explaining the use of


exponential series, the notation of complex numbers and partial differentiation and putting


trial solutions into differential equations. Only plane waves are considered and, with two


exceptions, Cartesian coordinates are used throughout. Vector methods are avoided except


for the scalar product and, on one occasion, the vector product.


Opinion canvassed amongst many undergraduates has argued for a ‘working’ as much as


for a ‘reading’ book; the result is a concise text amplified by many problems over a wide


range of content and sophistication. Hints for solution are freely given on the principle that


an undergraduates gains more from being guided to a result of physical significance than


from carrying out a limited arithmetical exercise.


The main theme of the book is that a medium through which energy is transmitted via


wave propagation behaves essentially as a continuum of coupled oscillators. A simple


oscillator is characterized by three parameters, two of which are capable of storing and


exchanging energy, whilst the third is energy dissipating. This is equally true of any medium.


The product of the energy storing parameters determines the velocity of wave


propagation through the medium and, in the absence of the third parameter, their ratio


governs the impedance which the medium presents to the waves. The energy dissipating


parameter introduces a loss term into the impedance; energy is absorbed from the wave


system and it attenuates.


This viewpoint allows a discussion of simple harmonic, damped, forced and coupled


oscillators which leads naturally to the behaviour of transverse waves on a string,


longitudinal waves in a gas and a solid, voltage and current waves on a transmission line


and electromagnetic waves in a dielectric and a conductor. All are amenable to this


common treatment, and it is the wide validity of relatively few physical principles which


this book seeks to demonstrate.


H. J. PAIN


May 1968
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Introduction to Second Edition


The main theme of the book remains unchanged but an extra chapter on Wave Mechanics


illustrates the application of classical principles to modern physics.


Any revision has been towards a simpler approach especially in the early chapters and


additional problems. Reference to a problem in the course of a chapter indicates its


relevance to the preceding text. Each chapter ends with a summary of its important results.


Constructive criticism of the first edition has come from many quarters, not least from


successive generations of physics and engineering students who have used the book; a


second edition which incorporates so much of this advice is the best acknowledgement of


its value.


H. J. PAIN


June 1976
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Introduction to Third Edition


Since this book was first published the physics of optical systems has been a major area of


growth and this development is reflected in the present edition. Chapter 10 has been


rewritten to form the basis of an introductory course in optics and there are further


applications in Chapters 7 and 8.


The level of this book remains unchanged.


H. J. PAIN


January 1983


xiii







Introduction to Fourth Edition


Interest in non-linear dynamics has grown in recent years through the application of chaos


theory to problems in engineering, economics, physiology, ecology, meteorology and


astronomy as well as in physics, biology and fluid dynamics. The chapter on non-linear


oscillations has been revised to include topics from several of these disciplines at a level


appropriate to this book. This has required an introduction to the concept of phase space


which combines with that of normal modes from earlier chapters to explain how energy is


distributed in statistical physics. The book ends with an appendix on this subject.


H. J. PAIN


September 1992
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Introduction to Fifth Edition


In this edition, three of the longer chapters of earlier versions have been split in two:


Simple Harmonic Motion is now the first chapter and Damped Simple Harmonic Motion


the second. Chapter 10 on waves in optical systems now becomes Chapters 11 and 12,


Waves in Optical Systems, and Interference and Diffraction respectively through a


reordering of topics. A final chapter on non-linear waves, shocks and solitons now follows


that on non-linear oscillations and chaos.


New material includes matrix applications to coupled oscillations, optical systems and


multilayer dielectric films. There are now sections on e.m. waves in the ionosphere and


other plasmas, on the laser cavity and on optical wave guides. An extended treatment of


solitons includes their role in optical transmission lines, in collisionless shocks in space, in


non-periodic lattices and their connection with Schrödinger’s equation.


H. J. PAIN


March 1998
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Introduction to Sixth Edition


This edition includes new material on electron waves in solids using the Kronig – Penney


model to show how their allowed energies are limited to Brillouin zones. The role of


phonons is also discussed. Convolutions are introduced and applied to optical problems via


the Array Theorem in Young’s experiment and the Optical Transfer Function. In the last


two chapters the sections on Chaos and Solutions have been reduced but their essential


contents remain.


I am grateful to my colleague Professor Robin Smith of Imperial College for his advice


on the Optical Transfer Function. I would like to thank my wife for typing the manuscript


of every edition except the first.


H. J. PAIN


January 2005, Oxford


xvi







Chapter Synopses


Chapter 1 Simple Harmonic Motion


Simple harmonic motion of mechanical and electrical oscillators (1) Vector representation


of simple harmonic motion (6) Superpositions of two SHMs by vector addition (12)


Superposition of two perpendicular SHMs (15) Polarization, Lissajous figures (17)


Superposition of many SHMs (20) Complex number notation and use of exponential


series (25) Summary of important results.


Chapter 2 Damped Simple Harmonic Motion


Damped motion of mechanical and electrical oscillators (37) Heavy damping (39) Critical


damping (40) Damped simple harmonic oscillations (41) Amplitude decay (43)


Logarithmic decrement (44) Relaxation time (46) Energy decay (46) Q-value (46) Rate


of energy decay equal to work rate of damping force (48) Summary of important results.


Chapter 3 The Forced Oscillatior


The vector operator i (53) Electrical and mechanical impedance (56) Transient and steady


state behaviour of a forced oscillator (58) Variation of displacement and velocity with


frequency of driving force (60) Frequency dependence of phase angle between force and


(a) displacement, (b) velocity (60) Vibration insulation (64) Power supplied to oscillator


(68) Q-value as a measure of power absorption bandwidth (70) Q-value as amplification


factor of low frequency response (71) Effect of transient term (74) Summary of important


results.


Chapter 4 Coupled Oscillations


Spring coupled pendulums (79) Normal coordinates and normal modes of vibration (81)


Matrices and eigenvalues (86) Inductance coupling of electrical oscillators (87) Coupling


of many oscillators on a loaded string (90) Wave motion as the limit of coupled oscillations


(95) Summary of important results.


xvii







Chapter 5 Transverse Wave Motion


Notation of partial differentiation (107) Particle and phase velocities (109) The wave


equation (110) Transverse waves on a string (111) The string as a forced oscillator (115)


Characteristic impedance of a string (117) Reflection and transmission of transverse waves


at a boundary (117) Impedance matching (121) Insertion of quarter wave element (124)


Standing waves on a string of fixed length (124) Normal modes and eigenfrequencies (125)


Energy in a normal mode of oscillation (127) Wave groups (128) Group velocity (130)


Dispersion (131) Wave group of many components (132) Bandwidth Theorem (134)


Transverse waves in a periodic structure (crystal) (135) Doppler Effect (141) Summary of


important results.


Chapter 6 Longitudinal Waves


Wave equation (151) Sound waves in gases (151) Energy distribution in sound waves (155)


Intensity (157) Specific acoustic impedance (158) Longitudinal waves in a solid (159)


Young’s Modulus (159) Poisson’s ratio (159) Longitudinal waves in a periodic structure


(162) Reflection and transmission of sound waves at a boundary (163) Summary of


important results.


Chapter 7 Waves on Transmission Lines


Ideal transmission line (173) Wave equation (174) Velocity of voltage and current waves


(174) Characteristic impedance (175) Reflection at end of terminated line (177) Standing


waves in short circuited line (178) Transmission line as a filter (179) Propagation constant


(181) Real transmission line with energy losses (183) Attenuation coefficient (185)


Diffusion equation (187) Diffusion coefficients (190) Attenuation (191) Wave equation


plus diffusion effects (190) Summary of important results.


Chapter 8 Electromagnetic Waves


Permeability and permittivity of a medium (199) Maxwell’s equations (202) Displacement


current (202) Wave equations for electric and magnetic field vectors in a dielectric (204)


Poynting vector (206) Impedance of a dielectric to e.m. waves (207) Energy density of e.m.


waves (208) Electromagnetic waves in a conductor (208) Effect of conductivity adds


diffusion equation to wave equation (209) Propagation and attenuation of e.m. waves in a


conductor (210) Skin depth (211) Ratio of displacement current to conduction current as a


criterion for dielectric or conducting behaviour (213) Relaxation time of a conductor (214)


Impedance of a conductor to e.m. waves (215) Reflection and transmission of e.m. waves at


a boundary (217) Normal incidence (217) Oblique incidence and Fresnel’s equations (218)


Reflection from a conductor (222) Connection between impedance and refractive index


(219) E.m. waves in plasmas and the ionosphere (223) Summary of important results.


xviii Chapter Synopses







Chapter 9 Waves in More than One Dimension


Plane wave representation in 2 and 3 dimensions (239) Wave equation in 2- dimensions


(240) Wave guide (242) Reflection of a 2-dimensional wave at rigid boundaries (242)


Normal modes and method of separation of variables for 1, 2 and 3 dimensions (245)


Normal modes in 2 dimensions on a rectangular membrane (247) Degeneracy (250)


Normal modes in 3 dimensions (250) Number of normal modes per unit frequency interval


per unit volume (251) Application to Planck’s Radiation Law and Debye’s Theory of


Specific Heats (251) Reflection and transmission of an e.m. wave in 3 dimensions (254)


Snell’s Law (256) Total internal reflexion and evanescent waves (256) Summary of


important results.


Chapter 10 Fourier Methods


Fourier series for a periodic function (267) Fourier series for any interval (271) Application


to a plucked string (275) Energy in normal modes (275) Application to rectangular velocity


pulse on a string (278) Bandwidth Theorem (281) Fourier integral of a single pulse (283)


Fourier Transforms (285) Application to optical diffraction (287) Dirac function (292)


Convolution (292) Convolution Theorem (297) Summary of important results.


Chapter 11 Waves in Optical Systems


Fermat’s Principle (307) Laws of reflection and refraction (307) Wavefront propagation


through a thin lens and a prism (310) Optical systems (313) Power of an optical surface


(314) Magnification (316) Power of a thin lens (318) Principal planes of an optical system


(320) Newton’s equation (320) Optical Helmholtz equation (321) Deviation through a lens


system (322) Location of principal planes (322) Matrix application to lens systems (325)


Summary of important results.


Chapter 12 Interference and Diffraction


Interference (333) Division of amplitude (334) Fringes of constant inclination and


thickness (335) Newton’s Rings (337) Michelson’s spectral interferometer (338) Fabry–


Perot interferometer (341) Finesse (345) Resolving power (343) Free spectral range (345)


Central spot scanning (346) Laser cavity (347) Multilayer dielectric films (350) Optical


fibre wave guide (353) Division of wavefront (355) Two equal sources (355) Spatial


coherence (360) Dipole radiation (362) Linear array of N equal sources (363) Fraunhofer


diffraction (367) Slit (368) N slits (370) Missing orders (373) Transmission diffraction


grating (373) Resolving power (374) Bandwidth theorem (376) Rectangular aperture (377)


Circular aperture (379) Fraunhofer far field diffraction (383) Airy disc (385) Michelson


Stellar Interferometer (386) Convolution Array Theorem (388) Optical Transfer Function


(391) Fresnel diffraction (395) Straight edge (397) Cornu spiral (396) Slit (400) Circular


aperture (401) Zone plate (402) Holography (403) Summary of important results.


Chapter Synopses xix







Chapter 13 Wave Mechanics


Historical review (411) De Broglie matter waves and wavelength (412) Heisenberg’s


Uncertainty Principle (414) Schrödinger’s time independent wave equation (417) The wave


function (418) Infinite potential well in 1 dimension (419) Quantization of energy (421)


Zero point energy (422) Probability density (423) Normalization (423) Infinite potential


well in 3 dimensions (424) Density of energy states (425) Fermi energy level (426) The


potential step (426) The finite square potential well (434) The harmonic oscillator (438)


Electron waves in solids (441) Bloch functions (441) Kronig–Penney Model (441)


Brillouin zones (445) Energy band (446) Band structure (448) Phonons (450) Summary of


important results.


Chapter 14 Non-linear Oscillations and Chaos


Anharmonic oscillations (459) Free vibrations of finite amplitude pendulum (459) Non-


linear restoring force (460) Forced vibrations (460) Thermal expansion of a crystal (463)


Electrical ‘relaxation’ oscillator (467) Chaos and period doubling in an electrical


‘relaxation’ oscillator (467) Chaos in population biology (469) Chaos in a non-linear


electrical oscillator (477) Phase space (481) Chaos in a forced non-linear mechanical


oscillator (487) Fractals (490) Koch Snowflake (490) Cantor Set (491) Smale Horseshoe


(493) Chaos in fluids (494) Couette flow (495) Rayleigh–Benard convection (497) Lorenz


chaotic attractor. (500) List of references


Chapter 15 Non-linear waves, Shocks and Solitons


Non-linear acoustic effects (505) Shock wave in a gas (506) Mach cone (507) Solitons


(513) The KdV equation (515) Solitons and Schrödinger’s equation (520) Instantons (521)


Optical solitons (521) Bibliography and references.


Appendix 1 Normal Modes, Phase Space and Statistical Physics


Number of phase space ‘cells’ per unit volume (533) Macrostate (535) Microstate (535)


Relative probability of energy level population for statistical distributions (a) Maxwell–


Boltzmann, (b) Fermi–Dirac, (c) Bose–Einstein (536) Mathematical derivation of the


statistical distributions (542).


Appendix 2 Kirchhoff’s Integral Theorem (547)


Appendix 3 Non-linear Schrödinger Equation (551)


Index (553)


xx Chapter Synopses







1


Simple Harmonic Motion


At first sight the eight physical systems in Figure 1.1 appear to have little in common.


1.1(a) is a simple pendulum, a mass m swinging at the end of a light rigid rod of length l.


1.1(b) is a flat disc supported by a rigid wire through its centre and oscillating through


small angles in the plane of its circumference.


1.1(c) is a mass fixed to a wall via a spring of stiffness s sliding to and fro in the x


direction on a frictionless plane.


1.1(d) is a mass m at the centre of a light string of length 2l fixed at both ends under a


constant tension T. The mass vibrates in the plane of the paper.


1.1(e) is a frictionless U-tube of constant cross-sectional area containing a length l of


liquid, density �, oscillating about its equilibrium position of equal levels in each


limb.


1.1(f ) is an open flask of volume V and a neck of length l and constant cross-sectional


area A in which the air of density � vibrates as sound passes across the neck.


1.1(g) is a hydrometer, a body of mass m floating in a liquid of density � with a neck of


constant cross-sectional area cutting the liquid surface. When depressed slightly


from its equilibrium position it performs small vertical oscillations.


1.1(h) is an electrical circuit, an inductance L connected across a capacitance C carrying


a charge q.


All of these systems are simple harmonic oscillators which, when slightly disturbed from


their equilibrium or rest postion, will oscillate with simple harmonic motion. This is the


most fundamental vibration of a single particle or one-dimensional system. A small


displacement x from its equilibrium position sets up a restoring force which is proportional


to x acting in a direction towards the equilibrium position.


Thus, this restoring force F may be written


F ¼ �sx


where s, the constant of proportionality, is called the stiffness and the negative sign shows


that the force is acting against the direction of increasing displacement and back towards
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2 Simple Harmonic Motion







the equilibrium position. A constant value of the stiffness restricts the displacement x to


small values (this is Hooke’s Law of Elasticity). The stiffness s is obviously the restoring


force per unit distance (or displacement) and has the dimensions


force


distance
� MLT �2


L


The equation of motion of such a disturbed system is given by the dynamic balance


between the forces acting on the system, which by Newton’s Law is


mass times acceleration ¼ restoring force


or


m€xx ¼ �sx


where the acceleration


€xx ¼ d2x


dt 2


This gives


m€xx þ sx ¼ 0


c


q


L


x


A


m


p


(h)(g)


mx + Apgx = 0
..


ω2 = A pg/m


Lq + 
q
c = 0


..


ω2 = 
1
Lc


Figure 1.1 Simple harmonic oscillators with their equations of motion and angular frequencies ! of
oscillation. (a) A simple pendulum. (b) A torsional pendulum. (c) A mass on a frictionless plane
connected by a spring to a wall. (d) A mass at the centre of a string under constant tension T. (e) A
fixed length of non-viscous liquid in a U-tube of constant cross-section. (f ) An acoustic Helmholtz
resonator. (g) A hydrometer mass m in a liquid of density �. (h) An electrical L C resonant circuit
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or


€xx þ s


m
x ¼ 0


where the dimensions of


s


m
are


MLT �2


ML
¼ T �2 ¼ � 2


Here T is a time, or period of oscillation, the reciprocal of � which is the frequency with


which the system oscillates.


However, when we solve the equation of motion we shall find that the behaviour of x


with time has a sinusoidal or cosinusoidal dependence, and it will prove more appropriate


to consider, not �, but the angular frequency ! ¼ 2�� so that the period


T ¼ 1


�
¼ 2�


ffiffiffiffi
m


s


r


where s=m is now written as !2. Thus the equation of simple harmonic motion


€xx þ s


m
x ¼ 0


becomes


€xx þ !2x ¼ 0 ð1:1Þ


(Problem 1.1)


Displacement in Simple Harmonic Motion


The behaviour of a simple harmonic oscillator is expressed in terms of its displacement x


from equilibrium, its velocity _xx, and its acceleration €xx at any given time. If we try the solution


x ¼ A cos!t


where A is a constant with the same dimensions as x, we shall find that it satisfies the


equation of motion


€xx þ !2x ¼ 0


for


_xx ¼ �A! sin!t


and


€xx ¼ �A!2 cos!t ¼ �!2x
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Another solution


x ¼ B sin!t


is equally valid, where B has the same dimensions as A, for then


_xx ¼ B! cos!t


and


€xx ¼ �B!2 sin!t ¼ �!2x


The complete or general solution of equation (1.1) is given by the addition or


superposition of both values for x so we have


x ¼ A cos!t þ B sin!t ð1:2Þ


with


€xx ¼ �!2ðA cos!t þ B sin!tÞ ¼ �!2x


where A and B are determined by the values of x and _xx at a specified time. If we rewrite the


constants as


A ¼ a sin� and B ¼ a cos�


where � is a constant angle, then


A2 þ B2 ¼ a2ðsin2�þ cos2�Þ ¼ a2


so that


a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2


p
and


x ¼ a sin� cos!t þ a cos� sin!t


¼ a sin ð!t þ �Þ


The maximum value of sin (!t þ �) is unity so the constant a is the maximum value of x,


known as the amplitude of displacement. The limiting values of sin ð!t þ �Þ are �1 so the


system will oscillate between the values of x ¼ �a and we shall see that the magnitude of a


is determined by the total energy of the oscillator.


The angle � is called the ‘phase constant’ for the following reason. Simple harmonic


motion is often introduced by reference to ‘circular motion’ because each possible value of


the displacement x can be represented by the projection of a radius vector of constant


length a on the diameter of the circle traced by the tip of the vector as it rotates in a positive
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anticlockwise direction with a constant angular velocity !. Each rotation, as the radius


vector sweeps through a phase angle of 2� rad, therefore corresponds to a complete


vibration of the oscillator. In the solution


x ¼ a sin ð!t þ �Þ


the phase constant �, measured in radians, defines the position in the cycle of oscillation at


the time t ¼ 0, so that the position in the cycle from which the oscillator started to move is


x ¼ a sin�


The solution


x ¼ a sin!t


defines the displacement only of that system which starts from the origin x ¼ 0 at time


t ¼ 0 but the inclusion of � in the solution


x ¼ a sin ð!t þ �Þ


where � may take all values between zero and 2� allows the motion to be defined from any


starting point in the cycle. This is illustrated in Figure 1.2 for various values of �.


(Problems 1.2, 1.3, 1.4, 1.5)


Velocity and Acceleration in Simple Harmonic Motion


The values of the velocity and acceleration in simple harmonic motion for


x ¼ a sin ð!t þ �Þ


are given by


dx


dt
¼ _xx ¼ a! cos ð!t þ �Þ


φ4


φ3 φ2


φ1


φ1


φ2


φ3


φ4
φ5


φ6


φ0


φ6


φ5 = 270°


= 90°


= 0


a


a


ωt


φx = a Sin(ωt +   )


Figure 1.2 Sinusoidal displacement of simple harmonic oscillator with time, showing variation of
starting point in cycle in terms of phase angle �
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and


d2x


dt 2
¼ €xx ¼ �a!2 sin ð!t þ �Þ


The maximum value of the velocity a! is called the velocity amplitude and the


acceleration amplitude is given by a!2.


From Figure 1.2 we see that a positive phase angle of �=2 rad converts a sine into a


cosine curve. Thus the velocity


_xx ¼ a! cos ð!t þ �Þ


leads the displacement


x ¼ a sinð!t þ �Þ


by a phase angle of �=2 rad and its maxima and minima are always a quarter of a cycle


ahead of those of the displacement; the velocity is a maximum when the displacement is


zero and is zero at maximum displacement. The acceleration is ‘anti-phase’ (� rad) with


respect to the displacement, being maximum positive when the displacement is maximum


negative and vice versa. These features are shown in Figure 1.3.


Often, the relative displacement or motion between two oscillators having the same


frequency and amplitude may be considered in terms of their phase difference �1 � �2


which can have any value because one system may have started several cycles before the


other and each complete cycle of vibration represents a change in the phase angle of


� ¼ 2�. When the motions of the two systems are diametrically opposed; that is, one has


x = a sin(ωt +  )


x = aω cos(ωt +  )


ωt


ωt


ωt


x = −aω2 sin(ωt +  )
aω2


aω


a


A
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Figure 1.3 Variation with time of displacement, velocity and acceleration in simple harmonic
motion. Displacement lags velocity by �=2 rad and is � rad out of phase with the acceleration. The
initial phase constant � is taken as zero
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x ¼ þa whilst the other is at x ¼ �a, the systems are ‘anti-phase’ and the total phase


difference


�1 � �2 ¼ n� rad


where n is an odd integer. Identical systems ‘in phase’ have


�1 � �2 ¼ 2n� rad


where n is any integer. They have exactly equal values of displacement, velocity and


acceleration at any instant.


(Problems 1.6, 1.7, 1.8, 1.9)


Non-linearity


If the stiffness s is constant, then the restoring force F ¼ �sx, when plotted versus x, will


produce a straight line and the system is said to be linear. The displacement of a linear


simple harmonic motion system follows a sine or cosine behaviour. Non-linearity results


when the stiffness s is not constant but varies with displacement x (see the beginning of


Chapter 14).


Energy of a Simple Harmonic Oscillator


The fact that the velocity is zero at maximum displacement in simple harmonic motion and


is a maximum at zero displacement illustrates the important concept of an exchange


between kinetic and potential energy. In an ideal case the total energy remains constant but


this is never realized in practice. If no energy is dissipated then all the potential energy


becomes kinetic energy and vice versa, so that the values of (a) the total energy at any time,


(b) the maximum potential energy and (c) the maximum kinetic energy will all be equal;


that is


E total ¼ KE þ PE ¼ KEmax ¼ PEmax


The solution x ¼ a sin (!t þ �) implies that the total energy remains constant because the


amplitude of displacement x ¼ �a is regained every half cycle at the position of maximum


potential energy; when energy is lost the amplitude gradually decays as we shall see later in


Chapter 2. The potential energy is found by summing all the small elements of work sx. dx


(force sx times distance dx) done by the system against the restoring force over the range


zero to x where x ¼ 0 gives zero potential energy.


Thus the potential energy¼ ð x


0


sx � dx ¼ 1
2


sx2


The kinetic energy is given by 1
2


m _xx2 so that the total energy


E ¼ 1
2


m _xx2 þ 1
2


sx2
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Since E is constant we have


dE


dt
¼ ðm€xx þ sxÞ _xx ¼ 0


giving again the equation of motion


m€xx þ sx ¼ 0


The maximum potential energy occurs at x ¼ �a and is therefore


PEmax ¼ 1
2


sa2


The maximum kinetic energy is


KEmax ¼ ð1
2


m _xx2Þmax ¼ 1
2


ma2!2½cos2ð!t þ �Þ
max


¼ 1
2


ma2!2


when the cosine factor is unity.


But m!2 ¼ s so the maximum values of the potential and kinetic energies are equal,


showing that the energy exchange is complete.


The total energy at any instant of time or value of x is


E ¼ 1
2


m _xx2 þ 1
2


sx2


¼ 1
2


ma2!2½cos2ð!t þ �Þ þ sin2ð!t þ �Þ

¼ 1


2
ma2!2


¼ 1
2


sa2


as we should expect.


Figure 1.4 shows the distribution of energy versus displacement for simple harmonic


motion. Note that the potential energy curve


PE ¼ 1
2


sx2 ¼ 1
2


ma2!2 sin2ð!t þ �Þ


is parabolic with respect to x and is symmetric about x ¼ 0, so that energy is stored in the


oscillator both when x is positive and when it is negative, e.g. a spring stores energy


whether compressed or extended, as does a gas in compression or rarefaction. The kinetic


energy curve


KE ¼ 1
2


m _xx2 ¼ 1
2


ma2!2 cos2ð!t þ �Þ


is parabolic with respect to both x and _xx. The inversion of one curve with respect to the


other displays the �=2 phase difference between the displacement (related to the potential


energy) and the velocity (related to the kinetic energy).


For any value of the displacement x the sum of the ordinates of both curves equals the


total constant energy E.
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(Problems 1.10, 1.11, 1.12)


Simple Harmonic Oscillations in an Electrical System


So far we have discussed the simple harmonic motion of the mechanical and fluid systems


of Figure 1.1, chiefly in terms of the inertial mass stretching the weightless spring of


stiffness s. The stiffness s of a spring defines the difficulty of stretching; the reciprocal of


the stiffness, the compliance C (where s ¼ 1=C) defines the ease with which the spring is


stretched and potential energy stored. This notation of compliance C is useful when


discussing the simple harmonic oscillations of the electrical circuit of Figure 1.1(h) and


Figure 1.5, where an inductance L is connected across the plates of a capacitance C. The


force equation of the mechanical and fluid examples now becomes the voltage equation


E
ne


rg
y


Total energy E = KE + PE
E


E
2


E
2


1
2


KE =    mx 


2


1
2


= E −    sx 


2


1
2


PE =    sx 


2


−a a
2


− a
2


+a
x


Displacement


Figure 1.4 Parabolic representation of potential energy and kinetic energy of simple harmonic
motion versus displacement. Inversion of one curve with respect to the other shows a 90� phase
difference. At any displacement value the sum of the ordinates of the curves equals the total
constant energy E


I +


+


−


− q
c


Lq + 
q
c = 0


L
dI
dt


Figure 1.5 Electrical system which oscillates simple harmonically. The sum of the voltages around
the circuit is given by Kirchhoff’s law as L dI=dt þ q=C ¼ 0
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(balance of voltages) of the electrical circuit, but the form and solution of the equations and


the oscillatory behaviour of the systems are identical.


In the absence of resistance the energy of the electrical system remains constant and is


exchanged between the magnetic field energy stored in the inductance and the electric field


energy stored between the plates of the capacitance. At any instant, the voltage across the


inductance is


V ¼ �L
dI


dt
¼ �L


d2q


dt 2


where I is the current flowing and q is the charge on the capacitor, the negative sign


showing that the voltage opposes the increase of current. This equals the voltage q=C


across the capacitance so that


L€qq þ q=C ¼ 0 ðKirchhoff’s LawÞ


or


€qq þ !2q ¼ 0


where


!2 ¼ 1


LC


The energy stored in the magnetic field or inductive part of the circuit throughout the


cycle, as the current increases from 0 to I, is formed by integrating the power at any instant


with respect to time; that is


EL ¼
ð


VI � dt


(where V is the magnitude of the voltage across the inductance).


So


EL ¼
ð


VI dt ¼
ð


L
dI


dt
I dt ¼


ð I


0


LI dI


¼ 1
2


LI 2 ¼ 1
2


L _qq2


The potential energy stored mechanically by the spring is now stored electrostatically by


the capacitance and equals


1
2


CV 2 ¼ q2


2C
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Comparison between the equations for the mechanical and electrical oscillators


mechanical (force) ! m€xx þ sx ¼ 0


electrical (voltage) ! L€qq þ q


C
¼ 0


mechanical (energy) ! 1
2


m _xx2 þ 1
2


sx2 ¼ E


electrical (energy) ! 1


2
L _qq2 þ 1


2


q2


C
¼ E


shows that magnetic field inertia (defined by the inductance L) controls the rate of change


of current for a given voltage in a circuit in exactly the same way as the inertial mass


controls the change of velocity for a given force. Magnetic inertial or inductive behaviour


arises from the tendency of the magnetic flux threading a circuit to remain constant and


reaction to any change in its value generates a voltage and hence a current which flows to


oppose the change of flux. This is the physical basis of Fleming’s right-hand rule.


Superposition of Two Simple Harmonic Vibrations in One
Dimension


(1) Vibrations Having Equal Frequencies


In the following chapters we shall meet physical situations which involve the superposition


of two or more simple harmonic vibrations on the same system.


We have already seen how the displacement in simple harmonic motion may be


represented in magnitude and phase by a constant length vector rotating in the positive


(anticlockwise) sense with a constant angular velocity !. To find the resulting motion of a


system which moves in the x direction under the simultaneous effect of two simple


harmonic oscillations of equal angular frequencies but of different amplitudes and phases,


we can represent each simple harmonic motion by its appropriate vector and carry out a


vector addition.


If the displacement of the first motion is given by


x1 ¼ a1 cos ð!t þ �1Þ


and that of the second by


x2 ¼ a2 cos ð!t þ �2Þ


then Figure 1.6 shows that the resulting displacement amplitude R is given by


R2 ¼ ða1 þ a2 cos �Þ2 þ ða2 sin �Þ2


¼ a2
1 þ a2


2 þ 2a1a2 cos �


where � ¼ �2 � �1 is constant.
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The phase constant 	 of R is given by


tan 	 ¼ a1 sin�1 þ a2 sin�2


a1 cos�1 þ a2 cos�2


so the resulting simple harmonic motion has a displacement


x ¼ R cos ð!t þ 	Þ


an oscillation of the same frequency ! but having an amplitude R and a phase constant 	.


(Problem 1.13)


(2) Vibrations Having Different Frequencies


Suppose we now consider what happens when two vibrations of equal amplitudes but


different frequencies are superposed. If we express them as


x1 ¼ a sin!1t


and


x2 ¼ a sin!2t


where


!2 > !1


y


x


a2


a1


R a2


  2


a2 sin δ


a2 cos δ
  2 −   1 = δ


φ θ


φ φ


f1


Figure 1.6 Addition of vectors, each representing simple harmonic motion along the x axis at
angular frequency ! to give a resulting simple harmonic motion displacement x ¼ R cos ð!t þ 	Þ ---
here shown for t ¼ 0
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then the resulting displacement is given by


x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ


¼ 2a sin
ð!1 þ !2Þt


2
cos


ð!2 � !1Þt
2


This expression is illustrated in Figure 1.7. It represents a sinusoidal oscillation at the


average frequency ð!1 þ !2Þ=2 having a displacement amplitude of 2a which modulates;


that is, varies between 2a and zero under the influence of the cosine term of a much slower


frequency equal to half the difference ð!2 � !1Þ=2 between the original frequencies.


When !1 and !2 are almost equal the sine term has a frequency very close to both !1


and !2 whilst the cosine envelope modulates the amplitude 2a at a frequency (!2 � !1)=2


which is very slow.


Acoustically this growth and decay of the amplitude is registered as ‘beats’ of strong


reinforcement when two sounds of almost equal frequency are heard. The frequency of the


‘beats’ is ð!2 � !1Þ, the difference between the separate frequencies (not half the


difference) because the maximum amplitude of 2a occurs twice in every period associated


with the frequency (!2 � !1Þ=2. We shall meet this situation again when we consider


the coupling of two oscillators in Chapter 4 and the wave group of two components in


Chapter 5.


2a


2a
x


ω2 − ω1


2
t


ωt


cos


ω2 + ω1


2
tsin


Figure 1.7 Superposition of two simple harmonic displacements x1 ¼ a sin! 1t and x 2 ¼ a sin!2t
when !2 > !1. The slow cos ½ð!2 � !1Þ=2
t envelope modulates the sin ½ð!2 þ !1Þ=2
t curve
between the values x ¼ �2a
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Superposition of Two Perpendicular Simple Harmonic
Vibrations


(1) Vibrations Having Equal Frequencies


Suppose that a particle moves under the simultaneous influence of two simple harmonic


vibrations of equal frequency, one along the x axis, the other along the perpendicular y axis.


What is its subsequent motion?


This displacements may be written


x ¼ a1 sin ð!t þ �1Þ
y ¼ a2 sin ð!t þ �2Þ


and the path followed by the particle is formed by eliminating the time t from these


equations to leave an expression involving only x and y and the constants �1 and �2.


Expanding the arguments of the sines we have


x


a1


¼ sin!t cos�1 þ cos!t sin�1


and


y


a2


¼ sin!t cos�2 þ cos!t sin�2


If we carry out the process


x


a1


sin�2 �
y


a2


sin�1


� �2


þ y


a2


cos�1 �
x


a1


cos�2


� �2


this will yield


x2


a2
1


þ y2


a2
2


� 2xy


a1a2


cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ ð1:3Þ


which is the general equation for an ellipse.


In the most general case the axes of the ellipse are inclined to the x and y axes, but these


become the principal axes when the phase difference


�2 � �1 ¼ �


2


Equation (1.3) then takes the familiar form


x2


a2
1


þ y2


a2
2


¼ 1


that is, an ellipse with semi-axes a1 and a2.
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If a1 ¼ a2 ¼ a this becomes the circle


x2 þ y2 ¼ a2


When


�2 � �1 ¼ 0; 2�; 4�; etc:


the equation simplifies to


y ¼ a2


a1


x


which is a straight line through the origin of slope a2=a1.


Again for �2 � �1 ¼ �, 3�, 5�, etc., we obtain


y ¼ � a2


a1


x


a straight line through the origin of equal but opposite slope.


The paths traced out by the particle for various values of � ¼ �2 � �1 are shown in


Figure 1.8 and are most easily demonstrated on a cathode ray oscilloscope.


When


�2 � �1 ¼ 0; �; 2�; etc:


and the ellipse degenerates into a straight line, the resulting vibration lies wholly in one


plane and the oscillations are said to be plane polarized.


δ  =  0 δ  = π
4


δ  =
π
2


δ  = δ  =π3
4


π


δ  = π5
4


δ  = π3
2


δ  = π7
4 δ  =  2π δ  = π


4
9


   2 −   1 = δx = a sin (ωt +  1)


y 
=


 a
 s


in
 (


ω
t +


   
2)


φ φ φ


φ


Figure 1.8 Paths traced by a system vibrating simultaneously in two perpendicular directions with
simple harmonic motions of equal frequency. The phase angle � is the angle by which the y motion
leads the x motion
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Convention defines the plane of polarization as that plane perpendicular to the plane


containing the vibrations. Similarly the other values of


�2 � �1


yield circular or elliptic polarization where the tip of the vector resultant traces out the


appropriate conic section.


(Problems 1.14, 1.15, 1.16)


Polarization


Polarization is a fundamental topic in optics and arises from the superposition of two


perpendicular simple harmonic optical vibrations. We shall see in Chapter 8 that when a


light wave is plane polarized its electrical field oscillation lies within a single plane and


traces a sinusoidal curve along the direction of wave motion. Substances such as quartz and


calcite are capable of splitting light into two waves whose planes of polarization are


perpendicular to each other. Except in a specified direction, known as the optic axis, these


waves have different velocities. One wave, the ordinary or O wave, travels at the same


velocity in all directions and its electric field vibrations are always perpendicular to the


optic axis. The extraordinary or E wave has a velocity which is direction-dependent. Both


ordinary and extraordinary light have their own refractive indices, and thus quartz and


calcite are known as doubly refracting materials. When the ordinary light is faster, as in


quartz, a crystal of the substance is defined as positive, but in calcite the extraordinary light


is faster and its crystal is negative. The surfaces, spheres and ellipsoids, which are the loci


of the values of the wave velocities in any direction are shown in Figure 1.9(a), and for a


Optic axis


O vibration


E vibration


x
y


x
E ellipsoid


O sphere


z


y


O sphere


E ellipsoid


Optic axis


z


Quartz (+ve)Calcite (−ve)


Figure 1.9a Ordinary (spherical) and extraordinary (elliposoidal) wave surfaces in doubly refracting
calcite and quartz. In calcite the E wave is faster than the O wave, except along the optic axis. In
quartz the O wave is faster. The O vibrations are always perpendicular to the optic axis, and the O and
E vibrations are always tangential to their wave surfaces


This section may be omitted at a first reading.
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given direction the electric field vibrations of the separate waves are tangential to the


surface of the sphere or ellipsoid as shown. Figure 1.9(b) shows plane polarized light


normally incident on a calcite crystal cut parallel to its optic axis. Within the crystal the


faster E wave has vibrations parallel to the optic axis, while the O wave vibrations are


perpendicular to the plane of the paper. The velocity difference results in a phase gain of


the E vibration over the O vibration which increases with the thickness of the crystal.


Figure 1.9(c) shows plane polarized light normally incident on the crystal of Figure 1.9(b)


with its vibration at an angle of 45� of the optic axis. The crystal splits the vibration into


Plane polarized
light normally
incident


O vibration
    to plane of paper


E vibration Optic
axis


Calcite
crystal


Figure 1.9b Plane polarized light normally incident on a calcite crystal face cut parallel to its optic
axis. The advance of the E wave over the O wave is equivalent to a gain in phase


E
O


45°


E vibration 90°
ahead in phase
of O vibration


O


E (Optic axis)


Calcite
crystal


Optic axis


Phase difference
causes rotation of
resulting electric
field vector


Sinusoidal
vibration of
electric field


Figure 1.9c The crystal of Fig. 1.9c is thick enough to produce a phase gain of �=2 rad in the
E wave over the O wave. Wave recombination on leaving the crystal produces circularly polarized
light
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equal E and O components, and for a given thickness the E wave emerges with a phase gain


of 90� over the O component. Recombination of the two vibrations produces circularly


polarized light, of which the electric field vector now traces a helix in the anticlockwise


direction as shown.


(2) Vibrations Having Different Frequencies (Lissajous Figures)


When the frequencies of the two perpendicular simple harmonic vibrations are not equal


the resulting motion becomes more complicated. The patterns which are traced are called


Lissajous figures and examples of these are shown in Figure 1.10 where the axial


frequencies bear the simple ratios shown and


� ¼ �2 � �1 ¼ 0 (on the left)


¼ �


2
(on the right)


If the amplitudes of the vibrations are respectively a and b the resulting Lissajous figure


will always be contained within the rectangle of sides 2a and 2b. The sides of the rectangle


will be tangential to the curve at a number of points and the ratio of the numbers of these


tangential points along the x axis to those along the y axis is the inverse of the ratio of the


corresponding frequencies (as indicated in Figure 1.10).


2a


2b


2b


2a


2b


2a


2a


2b


ωx


ωy
= 3ωx


ωy
= 2


ωy


ωx
= 3ωy


ωx
= 2


δ = 0


π
2


δ =


Figure 1.10 Simple Lissajous figures produced by perpendicular simple harmonic motions of
different angular frequencies
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SuperpositionofaLargeNumbernofSimpleHarmonicVibrations
of Equal Amplitude a and Equal Successive Phase Difference d


Figure 1.11 shows the addition of n vectors of equal length a, each representing a simple


harmonic vibration with a constant phase difference � from its neighbour. Two general


physical situations are characterized by such a superposition. The first is met in Chapter 5


as a wave group problem where the phase difference � arises from a small frequency


difference, �!, between consecutive components. The second appears in Chapter 12 where


the intensity of optical interference and diffraction patterns are considered. There, the


superposed harmonic vibrations will have the same frequency but each component will have


a constant phase difference from its neighbour because of the extra distance it has travelled.


The figure displays the mathematical expression


R cos ð!t þ �Þ ¼ a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ
þ � � � þ a cos ð!t þ ½n � 1
�Þ


A
Ba


a


a


a


a


a


a


C
r


O


rr


α δ


δ


δ
δ


δ


δ


δ


δ


90° −
290° − 2


n δ


n δ


2n δ


R = 2r
 si


n


2
 δa = 2r sin


Figure 1.11 Vector superposition of a large number n of simple harmonic vibrations of equal
amplitude a and equal successive phase difference �. The amplitude of the resultant


R ¼ 2r sin
n�


2
¼ a


sin n�=2


sin �=2


and its phase with respect to the first contribution is given by


� ¼ ðn � 1Þ�=2
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where R is the magnitude of the resultant and � is its phase difference with respect to the


first component a cos!t.


Geometrically we see that each length


a ¼ 2r sin
�


2


where r is the radius of the circle enclosing the (incomplete) polygon.


From the isosceles triangle OAC the magnitude of the resultant


R ¼ 2r sin
n�


2
¼ a


sin n�=2


sin �=2


and its phase angle is seen to be


� ¼ OÂAB � OÂAC


In the isosceles triangle OAC


ÔOAC ¼ 90� � n�


2


and in the isosceles triangle OAB


OÂAB ¼ 90� � �


2


so


� ¼ 90� � �


2


� �
� 90� � n�


2


� �
¼ ðn � 1Þ �


2


that is, half the phase difference between the first and the last contributions. Hence the


resultant


R cos ð!t þ �Þ ¼ a
sin n�=2


sin �=2
cos !t þ ðn � 1Þ �


2


� �


We shall obtain the same result later in this chapter as an example on the use of exponential


notation.


For the moment let us examine the behaviour of the magnitude of the resultant


R ¼ a
sin n�=2


sin �=2


which is not constant but depends on the value of �. When n is very large � is very small


and the polygon becomes an arc of the circle centre O, of length na ¼ A, with R as the


chord. Then


� ¼ ðn � 1Þ �
2
� n�


2
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and


sin
�


2
! �


2
� �


n


Hence, in this limit,


R ¼ a
sin n�=2


sin �=2
¼ a


sin�


�=n
¼ na


sin�


�
¼ A sin�


�


The behaviour of A sin�=� versus � is shown in Figure 1.12. The pattern is symmetric


about the value � ¼ 0 and is zero whenever sin � ¼ 0 except at �! 0 that is, when sin


�=�! 1. When � ¼ 0, � ¼ 0 and the resultant of the n vectors is the straight line of length


A, Figure 1.12(b). As � increases A becomes the arc of a circle until at � ¼ �=2 the first and


last contributions are out of phase ð2� ¼ �Þ and the arc A has become a semicircle of


which the diameter is the resultant R Figure 1.12(c). A further increase in � increases � and


curls the constant length A into the circumference of a circle (� ¼ �) with a zero resultant,


Figure 1.12(d). At � ¼ 3�=2, Figure 1.12(e) the length A is now 3/2 times the


circumference of a circle whose diameter is the amplitude of the first minimum.


Superposition of n Equal SHM Vectors of Length a with
Random Phase


When the phase difference between the successive vectors of the last section may take


random values � between zero and 2� (measured from the x axis) the vector superposition


and resultant R may be represented by Figure 1.13.


(b)
(c)


(e)
(d)


0


R A


2A


A


A=na


A =


R =


α


α


2ππ π


π


2


2


π
23


3 circumference


A sinα


Figure 1.12 (a) Graph of A sin �=� versus �, showing the magnitude of the resultants for (b)
� ¼ 0; (c) � ¼ �/2; (d) � ¼ � and (e) � ¼ 3�/2


This section may be omitted at a first reading.
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The components of R on the x and y axes are given by


Rx ¼ a cos�1 þ a cos�2 þ a cos�3 . . . a cos�n


¼ a
Xn


i¼1


cos� i


and


Ry ¼ a
Xn


i¼1


sin� i


where


R2 ¼ R2
x þ R2


y


Now


R2
x ¼ a2


Xn


i¼1


cos� i


 !2


¼ a2
Xn


i¼1


cos2 � i þ
Xn


i¼1
i 6¼j


cos� i


Xn


j¼1


cos� j


2
4


3
5


In the typical term 2 cos � i cos � j of the double summation, cos � i and cos � j have random


values between � 1 and the averaged sum of sets of these products is effectively zero.


The summation


Xn


i¼1


cos2 � i ¼ n cos2 �


R


x


y


Figure 1.13 The resultant R ¼
ffiffiffi
n


p
a of n vectors, each of length a, having random phase. This result


is important in optical incoherence and in energy loss from waves from random dissipation processes
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that is, the number of terms n times the average value cos2 � which is the integrated value


of cos2 � over the interval zero to 2� divided by the total interval 2�, or


cos2 � ¼ 1


2�


ð 2�


0


cos2 � d� ¼ 1


2
¼ sin2 �


So


R2
x ¼ a2


Xn


i¼1


cos2 � i ¼ na2cos2 � i ¼
na2


2


and


R2
y ¼ a2


Xn


i¼1


sin2 � i ¼ na2sin2 � i ¼
na2


2


giving


R2 ¼ R2
x þ R2


y ¼ na2


or


R ¼
ffiffiffi
n


p
a


Thus, the amplitude R of a system subjected to n equal simple harmonic motions of


amplitude a with random phases in only
ffiffiffi
n


p
a whereas, if the motions were all in phase R


would equal na.


Such a result illustrates a very important principle of random behaviour.


(Problem 1.17)


Applications


Incoherent Sources in Optics The result above is directly applicable to the problem of


coherence in optics. Light sources which are in phase are said to be coherent and this


condition is essential for producing optical interference effects experimentally. If the


amplitude of a light source is given by the quantity a its intensity is proportional to a2, n


coherent sources have a resulting amplitude na and a total intensity n2a2. Incoherent


sources have random phases, n such sources each of amplitude a have a resulting amplitudeffiffiffi
n


p
a and a total intensity of na2.


Random Processes and Energy Absorption From our present point of view the


importance of random behaviour is the contribution it makes to energy loss or absorption


from waves moving through a medium. We shall meet this in all the waves we discuss.
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Random processes, for example collisions between particles, in Brownian motion, are of


great significance in physics. Diffusion, viscosity or frictional resistance and thermal


conductivity are all the result of random collision processes. These energy dissipating


phenomena represent the transport of mass, momentum and energy, and change only in the


direction of increasing disorder. They are known as ‘thermodynamically irreversible’


processes and are associated with the increase of entropy. Heat, for example, can flow only


from a body at a higher temperature to one at a lower temperature. Using the earlier


analysis where the length a is no longer a simple harmonic amplitude but is now the


average distance a particle travels between random collisions (its mean free path), we see


that after n such collisions (with, on average, equal time intervals between collisions) the


particle will, on average, have travelled only a distance
ffiffiffi
n


p
a from its position at time t ¼ 0,


so that the distance travelled varies only with the square root of the time elapsed instead of


being directly proportional to it. This is a feature of all random processes.


Not all the particles of the system will have travelled a distance
ffiffiffi
n


p
a but this distance is


the most probable and represents a statistical average.


Random behaviour is described by the diffusion equation (see the last section of


Chapter 7) and a constant coefficient called the diffusivity of the process will always


arise. The dimensions of a diffusivity are always length2/time and must be interpreted in


terms of a characteristic distance of the process which varies only with the square root of


time.


Some Useful Mathematics


The Exponential Series


By a ‘natural process’ of growth or decay we mean a process in which a quantity changes


by a constant fraction of itself in a given interval of space or time. A 5% per annum


compound interest represents a natural growth law; attenuation processes in physics usually


describe natural decay.


The law is expressed differentially as


dN


N
¼ �� dx or


dN


N
¼ �� dt


where N is the changing quantity, � is a constant and the positive and negative signs


represent growth and decay respectively. The derivatives dN/dx or dN/dt are therefore


proportional to the value of N at which the derivative is measured.


Integration yields N ¼ N0e��x or N ¼ N0e��t where N0 is the value at x or t ¼ 0 and e


is the exponential or the base of natural logarithms. The exponential series is defined as


e x ¼ 1 þ x þ x2


2!
þ x3


3!
þ � � � þ xn


n!
þ � � �


and is shown graphically for positive and negative x in Figure 1.14. It is important to note


that whatever the form of the index of the logarithmic base e, it is the power to which the
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base is raised, and is therefore always non-dimensional. Thus e�x is non-dimensional and �
must have the dimensions of x�1. Writing


e�x ¼ 1 þ �x þ ð�xÞ2


2!
þ ð�xÞ3


3!
þ � � �


it follows immediately that


d


dx
ðe�xÞ ¼ �þ 2�2


2!
x þ 3�3


3!
x2 þ � � �


¼ � 1 þ �x þ ð�xÞ2


2!
þ ð�xÞ3


3!


!
þ � � �


" #


¼ �e�x


Similarly


d2


dx2
ðe� xÞ ¼ �2 e� x


In Chapter 2 we shall use d(e�t)=dt ¼ � e�t and d2 (e�t)=dt 2 ¼ �2 e�t on a number of


occasions.


By taking logarithms it is easily shown that e x e y ¼ e xþy since loge ðe x e yÞ ¼
loge e x þ loge e y ¼ x þ y.


The Notation i ¼
ffiffiffiffiffiffiffi
�1


p


The combination of the exponential series with the complex number notation i ¼
ffiffiffiffiffiffiffi
�1


p
is


particularly convenient in physics. Here we shall show the mathematical convenience in


expressing sine or cosine (oscillatory) behaviour in the form eix ¼ cos x þ i sin x.


0
x


y


1


y = exy = e−x


Figure 1.14 The behaviour of the exponential series y ¼ e x and y ¼ e�x
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In Chapter 3 we shall see the additional merit of i in its role of vector operator.


The series representation of sin x is written


sin x ¼ x � x3


3!
þ x5


5!
� x7


7!
� � �


and that of cos x is


cos x ¼ 1 � x2


2!
þ x4


4!
� x6


6!
� � �


Since


i ¼
ffiffiffiffiffiffiffi
�1


p
; i2 ¼ �1; i3 ¼ �i


etc. we have


eix ¼ 1 þ ix þ ðixÞ2


2!
þ ðixÞ3


3!
þ ðixÞ4


4!
þ � � �


¼ 1 þ ix � x2


2!
� ix3


3!
þ x4


4!
þ � � �


¼ 1 � x2


2!
þ x4


4!
þ i x � x3


3!
þ x5


5!
þ � � �


� �
¼ cos x þ i sin x


We also see that


d


dx
ðeixÞ ¼ i e ix ¼ i cos x � sin x


Often we shall represent a sine or cosine oscillation by the form eix and recover the original


form by taking that part of the solution preceded by i in the case of the sine, and the real


part of the solution in the case of the cosine.


Examples


(1) In simple harmonic motion (€xx þ !2x ¼ 0) let us try the solution x ¼ a ei!t e i�, where a


is a constant length, and � (and therefore e i�) is a constant.


dx


dt
¼ _xx ¼ i!a ei!t ei� ¼ i!x


d2x


dt 2
¼ €xx ¼ i2!2a ei!t ei� ¼ �!2x


Therefore


x ¼ a ei!t ei� ¼ a eið!tþ�Þ


¼ a cos ð!t þ �Þ þ i a sin ð!t þ �Þ


is a complete solution of €xx þ !2x ¼ 0.
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On p. 6 we used the sine form of the solution; the cosine form is equally valid and merely


involves an advance of �=2 in the phase �.


(2)


e ix þ e�ix ¼ 2 1 � x2


2!
þ x4


4!
� � � �


� �
¼ 2 cos x


eix � e�ix ¼ 2i x � x3


3!
þ x5


5!
� � � �


� �
¼ 2i sin x


(3) On p. 21 we used a geometrical method to show that the resultant of the superposed


harmonic vibrations


a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ð!t þ ½n � 1
�Þ


¼ a
sin n�=2


sin �=2
cos !t þ n � 1


2


� �
�


� �


We can derive the same result using the complex exponential notation and taking the real


part of the series expressed as the geometrical progression


a ei!t þ a eið!tþ�Þ þ a eið!tþ2�Þ þ � � � þ a ei½!tþðn�1Þ�



¼ a ei!tð1 þ z þ z2 þ � � � þ z ðn�1ÞÞ


where z ¼ e i�.


Writing


SðzÞ ¼ 1 þ z þ z2 þ � � � þ zn�1


and


z½SðzÞ
 ¼ z þ z2 þ � � � þ zn


we have


SðzÞ ¼ 1 � zn


1 � z
¼ 1 � ein�


1 � ei�


So


a ei!tSðzÞ ¼ a ei!t 1 � ein�


1 � ei�


¼ a ei!t ein�=2ðe�in�=2 � e in�=2Þ
ei�=2ðe�i�=2 � ei�=2Þ


¼ a ei½!tþ n�1
2ð Þ�
 sin n�=2


sin �=2
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with the real part


¼ a cos !t þ n � 1


2


� �
�


� �
sin n�=2


sin �=2


which recovers the original cosine term from the complex exponential notation.


(Problem 1.18)


(4) Suppose we represent a harmonic oscillation by the complex exponential form


z ¼ a ei!t


where a is the amplitude. Replacing i by � i defines the complex conjugate


z ¼ a e�i!t


The use of this conjugate is discussed more fully in Chapter 3 but here we can note that the


product of a complex quantity and its conjugate is always equal to the square of the


amplitude for


zz ¼ a2 e i!t e�i!t ¼ a2 e ði�iÞ!t ¼ a2 e0


¼ a2


(Problem 1.19)


Problem 1.1
The equation of motion


m€xx ¼ �sx with !2 ¼ s


m


applies directly to the system in Figure 1.1(c).


If the pendulum bob of Figure 1.1(a) is displaced a small distance x show that the stiffness (restoring


force per unit distance) is mg=l and that !2 ¼ g=l where g is the acceleration due to gravity. Now use


the small angular displacement 	 instead of x and show that ! is the same.


In Figure 1.1(b) the angular oscillations are rotational so the mass is replaced by the moment of


inertia I of the disc and the stiffness by the restoring couple of the wire which is C rad�1 of angular


displacement. Show that !2 ¼ C=I.


In Figure 1.1(d) show that the stiffness is 2T=l and that !2 ¼ 2T=lm.


In Figure 1.1(e) show that the stiffness of the system in 2�Ag, where A is the area of cross section


and that !2 ¼ 2g=l where g is the acceleration due to gravity.
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In Figure 1.1(f) only the gas in the flask neck oscillates, behaving as a piston of mass �Al. If the


pressure changes are calculated from the equation of state use the adiabatic relation pV  ¼ constant


and take logarithms to show that the pressure change in the flask is


dp ¼ �p
dV


V
¼ �p


Ax


V
;


where x is the gas displacement in the neck. Hence show that !2 ¼ pA=l�V . Note that p is the


stiffness of a gas (see Chapter 6).


In Figure 1.1(g), if the cross-sectional area of the neck is A and the hydrometer is a distance x above


its normal floating level, the restoring force depends on the volume of liquid displaced (Archimedes’


principle). Show that !2 ¼ g�A=m.


Check the dimensions of !2 for each case.


Problem 1.2
Show by the choice of appropriate values for A and B in equation (1.2) that equally valid solutions


for x are


x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ


and check that these solutions satisfy the equation


€xx þ ! 2x ¼ 0


Problem 1.3
The pendulum in Figure 1.1(a) swings with a displacement amplitude a. If its starting point from rest


is


ðaÞ x ¼ a


ðbÞ x ¼ �a


find the different values of the phase constant � for the solutions


x ¼ a sin ð!t þ �Þ
x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ


For each of the different values of �, find the values of !t at which the pendulum swings through the


positions


x ¼ þa=
ffiffiffi
2


p


x ¼ a=2
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and


x ¼ 0


for the first time after release from


x ¼ �a


Problem 1.4
When the electron in a hydrogen atom bound to the nucleus moves a small distance from its


equilibrium position, a restoring force per unit distance is given by


s ¼ e 2=4��0r 2


where r ¼ 0:05 nm may be taken as the radius of the atom. Show that the electron can oscillate with


a simple harmonic motion with


!0 � 4:5 � 10�16 rad s�1


If the electron is forced to vibrate at this frequency, in which region of the electromagnetic spectrum


would its radiation be found?


e ¼ 1:6 � 10�19 C; electron mass m e ¼ 9:1 � 10�31 kg


� 0 ¼ 8:85 � 10�12 N�1 m�2 C 2


Problem 1.5
Show that the values of !2 for the three simple harmonic oscillations (a), (b), (c) in the diagram are


in the ratio 1 : 2 : 4.


m


m m


ssss


s


(a) (b) (c)


Problem 1.6
The displacement of a simple harmonic oscillator is given by


x ¼ a sin ð!t þ �Þ


If the oscillation started at time t ¼ 0 from a position x0 with a velocity _xx ¼ v0 show that


tan� ¼ !x0=v 0


and


a ¼ ðx2
0 þ v 2


0=!
2Þ 1=2
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Problem 1.7
A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a


and spends a time dt in moving from x to x þ dx. Show that the probability of finding it between x


and x þ dx is given by


dx


�ða2 � x2Þ 1=2


(in wave mechanics such a probability is not zero for x > a).


Problem. 1.8
Many identical simple harmonic oscillators are equally spaced along the x axis of a medium and a


photograph shows that the locus of their displacements in the y direction is a sine curve. If the


distance � separates oscillators which differ in phase by 2� radians, what is the phase difference


between two oscillators a distance x apart?


Problem 1.9
A mass stands on a platform which vibrates simple harmonically in a vertical direction at a


frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement


exceeds 10�2m.


Problem 1.10
A mass M is suspended at the end of a spring of length l and stiffness s. If the mass of the spring is m


and the velocity of an element dy of its length is proportional to its distance y from the fixed end of


the spring, show that the kinetic energy of this element is


1


2


m


l
dy


� � y


l
v


� � 2


where v is the velocity of the suspended mass M. Hence, by integrating over the length of the spring,


show that its total kinetic energy is 1
6


mv2 and, from the total energy of the oscillating system, show


that the frequency of oscillation is given by


!2 ¼ s


M þ m=3


Problem 1.11
The general form for the energy of a simple harmonic oscillator is


E ¼ 1
2


mass (velocity) 2 þ 1
2


stiffness (displacement)2


Set up the energy equations for the oscillators in Figure 1.1(a), (b), (c), (d), (e), (f) and (g), and use


the expression


dE


dt
¼ 0


to derive the equation of motion in each case.
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Problem 1.12
The displacement of a simple harmonic oscillator is given by x ¼ a sin !t. If the values of the


displacement x and the velocity _xx are plotted on perpendicular axes, eliminate t to show that the locus


of the points (x; _xx) is an ellipse. Show that this ellipse represents a path of constant energy.


Problem 1.13
In Chapter 12 the intensity of the pattern when light from two slits interferes (Young’s experiment)


will be seen to depend on the superposition of two simple harmonic oscillations of equal amplitude a


and phase difference �. Show that the intensity


I ¼ R2 / 4a 2 cos2 �=2


Between what values does the intensity vary?


Problem 1.14
Carry out the process indicated in the text to derive equation (1.3) on p. 15.


Problem 1.15
The co-ordinates of the displacement of a particle of mass m are given by


x ¼ a sin!t


y ¼ b cos!t


Eliminate t to show that the particle follows an elliptical path and show by adding its kinetic and


potential energy at any position x, y that the ellipse is a path of constant energy equal to the sum of


the separate energies of the simple harmonic vibrations.


Prove that the quantity mðx _yy � y _xxÞ is also constant. What does this quantity represent?


Problem 1.16
Two simple harmonic motions of the same frequency vibrate in directions perpendicular to each


other along the x and y axes. A phase difference


� ¼ �2 � � 1


exists between them such that the principal axes of the resulting elliptical trace are inclined at an


angle to the x and y axes. Show that the measurement of two separate values of x (or y) is sufficient to


determine the phase difference.


(Hint: use equation (1.3) and measure y(max), and y for (x ¼ 0.)


Problem 1.17
Take a random group of n > 7 values of � in the range 0���� and form the product


Xn


i¼1
i6¼j


cos� i


Xn


j¼1


cos� j


Show that the average value obtained for several such groups is negligible with respect to n=2.
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Problem 1.18
Use the method of example (3) (p. 28) to show that


a sin!t þ a sin ð!t þ �Þ þ a sin ð!t þ 2�Þ þ � � � þ a sin ½!t þ ðn � 1Þ�



¼ a sin !t þ ðn � 1Þ
2


�


� �
sin n�=2


sin �=2


Problem 1.19
If we represent the sum of the series


a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ½!t þ ðn � 1Þ�



by the complex exponential form


z ¼ a e i!tð1 þ e i� þ e i2� þ � � � þ e iðn�1Þ�Þ


show that


zz ¼ a2 sin 2 n�=2


sin2 �=2


Summary of Important Results


Simple Harmonic Oscillator (mass m, stiffness s, amplitude a)


Equation of motion €xx þ !2x ¼ 0 where !2 ¼ s=m


Displacement x ¼ a sin ð!t þ �Þ
Energy ¼ 1


2
m _xx2 þ 1


2
sx2 ¼ 1


2
m!2 a2 ¼ 1


2
sa2 ¼ constant


Superposition (Amplitude and Phase) of two SHMs
One-dimensional


Equal !, different amplitudes, phase difference �, resultant R where R2 ¼ a2
1 þ a2


2þ
2a1a2 cos �
Different !, equal amplitude,


x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ


¼ 2a sin
ð!1 þ !2Þt


2
cos


ð!2 � !1Þt
2


Two-dimensional: perpendicular axes
Equal !, different amplitude—giving general conic section


x2


a2
1


þ y2


a2
2


� 2xy


a1a2


cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ


(basis of optical polarization)


34 Simple Harmonic Motion







Superposition of n SHM Vectors (equal amplitude a , constant successive phase difference �)


The resultant is R cos ð!t þ �Þ, where


R ¼ a
sin n�=2


sin �=2


and


� ¼ ðn � 1Þ�=2


Important in optical diffraction and wave groups of many components.
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Damped Simple Harmonic Motion


Initially we discussed the case of ideal simple harmonic motion where the total energy


remained constant and the displacement followed a sine curve, apparently for an infinite


time. In practice some energy is always dissipated by a resistive or viscous process; for


example, the amplitude of a freely swinging pendulum will always decay with time as


energy is lost. The presence of resistance to motion means that another force is active,


which is taken as being proportional to the velocity. The frictional force acts in the


direction opposite to that of the velocity (see Figure 2.1) and so Newton’s Second law


becomes


m€xx ¼ � sx � r _xx


where r is the constant of proportionality and has the dimensions of force per unit of


velocity. The presence of such a term will always result in energy loss.


The problem now is to find the behaviour of the displacement x from the equation


m€xx þ r _xx þ sx ¼ 0 ð2:1Þ


where the coefficients m, r and s are constant.


When these coefficients are constant a solution of the form x ¼ C e�t can always be


found. Obviously, since an exponential term is always nondimensional, C has the


dimensions of x (a length, say) and � has the dimensions of inverse time, T �1. We shall


see that there are three possible forms of this solution, each describing a different


behaviour of the displacement x with time. In two of these solutions C appears explicitly as


a constant length, but in the third case it takes the form


C ¼ A þ Bt�


� The number of constants allowed in the general solution of a differential equation is always equal
to the order (that is, the highest differential coefficient) of the equation. The two values A and B are
allowed because equation (2.1) is second order. The values of the constants are adjusted to satisfy the
initial conditions.
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where A is a length, B is a velocity and t is time, giving C the overall dimensions of a


length, as we expect. From our point of view this case is not the most important.


Taking C as a constant length gives _xx ¼ �C e�t and €xx ¼ �2C e�t, so that equation (2.1)


may be rewritten


C e�tðm�2 þ r�þ sÞ ¼ 0


so that either


x ¼ C e�t ¼ 0 (which is trivial)


or


m�2 þ r�þ s ¼ 0


Solving the quadratic equation in � gives


� ¼ �r


2m
�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2


4m2
� s


m


r


Note that r=2m and ðs=mÞ1=2
, and therefore, �, all have the dimensions of inverse time,


T �1, which we expect from the form of e�t.


The displacement can now be expressed as


x1 ¼ C1 e�rt=2mþðr 2=4m 2�s=mÞ 1=2
t; x2 ¼ C2 e�rt=2m�ðr 2=4m 2�s=mÞ 1=2


t


or the sum of both these terms


x ¼ x1 þ x2 ¼ C1 e�rt=2mþðr 2=4m 2�s=mÞ 1=2
t þ C2 e�rt=2m�ðr 2=4m 2�s=mÞ 1=2


t


The bracket ðr 2=4m2 � s=mÞ can be positive, zero or negative depending on the relative


magnitude of the two terms inside it. Each of these conditions gives one of the three


possible solutions referred to earlier and each solution describes a particular kind of


m


Frictional
force F = −rx


s


x


Figure 2.1 Simple harmonic motion system with a damping or frictional force r _xx acting against the
direction of motion. The equation of motion is m€xx þ r _xx þ sx ¼ 0
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behaviour. We shall discuss these solutions in order of increasing significance from our


point of view; the third solution is the one we shall concentrate upon throughout the rest of


this book.


The conditions are:


(1) Bracket positive ðr 2=4m2 > s=mÞ. Here the damping resistance term r 2=4m2


dominates the stiffness term s=m, and heavy damping results in a dead beat system.


(2) Bracket zero ðr 2=4m2 ¼ s=mÞ. The balance between the two terms results in a


critically damped system.


Neither (1) nor (2) gives oscillatory behaviour.


(3) Bracket negative ðr 2=4m2 < s=mÞ. The system is lightly damped and gives oscillatory


damped simple harmonic motion.


Case 1. Heavy Damping


Writing r=2m ¼ p and ðr 2=4m2 � s=mÞ1=2 ¼ q, we can replace


x ¼ C1 e�rt=2mþðr 2=4m 2�s=mÞ 1=2
t þ C2 e�rt=2m�ðr 2=4m 2�s=mÞ 1=2


t


by


x ¼ e�ptðC1 eqt þ C2 e�qt Þ;


where the C1 and C2 are arbitrary in value but have the same dimensions as C (note that


two separate values of C are allowed because the differential equation (2.1) is second


order).


If now F ¼ C1 þ C2 and G ¼ C1 � C2, the displacement is given by


x ¼ e�pt F


2
ðeqt þ e�qtÞ þ G


2
ðeqt � e�qtÞ


� �


or


x ¼ e�ptðF cosh qt þ G sinh qtÞ


This represents non-oscillatory behaviour, but the actual displacement will depend upon


the initial (or boundary) conditions; that is, the value of x at time t ¼ 0. If x ¼ 0 at t ¼ 0


then F ¼ 0, and


x ¼ G e�rt=2m sinh
r 2


4m2
� s


m


� �1=2


t


Figure 2.2 illustrates such behaviour when a heavily damped system is disturbed from


equilibrium by a sudden impulse (that is, given a velocity at t ¼ 0). It will return to zero
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displacement quite slowly without oscillating about its equilibrium position. More


advanced mathematics shows that the value of the velocity dx=dt vanishes only once so that


there is only one value of maximum displacement.


(Problem 2.1)


Case 2. Critical Damping ðr 2=4m2 ¼ s=mÞ
Using the notation of Case 1, we see that q ¼ 0 and that x ¼ e�ptðC1 þ C2Þ. This is, in


fact, the limiting case of the behaviour of Case I as q changes from positive to negative. In


this case the quadratic equation in � has equal roots, which, in a differential equation


solution, demands that C must be written C ¼ A þ Bt, where A is a constant length and B a


given velocity which depends on the boundary conditions. It is easily verified that the value


x ¼ ðA þ BtÞe�rt=2m ¼ ðA þ BtÞe�pt


satisfies m€xx þ r _xx þ sx ¼ 0 when r 2=4m2 ¼ s=m.


(Problem 2.2)


Application to a Damped Mechanical Oscillator


Critical damping is of practical importance in mechanical oscillators which experience


sudden impulses and are required to return to zero displacement in the minimum time.


Suppose such a system has zero displacement at t ¼ 0 and receives an impulse which gives


it an initial velocity V.


Time


r  increasing


D
is


pl
ac


em
en


t


Heavy damping r 2


4m 2


s
m 


>


Figure 2.2 Non-oscillatory behaviour of damped simple harmonic system with heavy damping
(where r 2=4m2 > s=m) after the system has been given an impulse from a rest position x ¼ 0
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Then x ¼ 0 (so that A ¼ 0) and _xx ¼ V at t ¼ 0. However,


_xx ¼ B½ð�ptÞe�pt þ e�pt	 ¼ B at t ¼ 0


so that B ¼ V and the complete solution is


x ¼ Vt e�pt


The maximum displacement x occurs when the system comes to rest before returning to


zero displacement. At maximum displacement


_xx ¼ V e�ptð1 � ptÞ ¼ 0


thus giving ð1 � ptÞ ¼ 0, i.e. t ¼ 1=p.


At this time the displacement is therefore


x ¼ Vt e�pt ¼ V


p
e�1


¼ 0:368
V


p
¼ 0:368


2mV


r


The curve of displacement versus time is shown in Figure 2.3; the return to zero in a


critically damped system is reached in minimum time.


Case 3. Damped Simple Harmonic Motion


When r 2=4m2 < s=m the damping is light, and this gives from the present point of view the


most important kind of behaviour, oscillatory damped simple harmonic motion.


r 2


4m 2


s
m 


2m
r


t =


m
r


=


Displacement


Time0


Critical
damping2 Ve−1x =


Figure 2.3 Limiting case of non-oscillatory behaviour of damped simple harmonic system where
r 2=4m2 ¼ s=m (critical damping)
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The expression ðr 2=4m2 � s=mÞ1=2
is an imaginary quantity, the square root of a


negative number, which can be rewritten


� r 2


4m2
� s


m


� �1=2


¼ �
ffiffiffiffiffiffiffi
�1


p s


m
� r 2


4m2


� �1=2


¼ �i
s


m
� r 2


4m2


� �1=2


ðwhere i ¼
ffiffiffiffiffiffiffi
�1


p
Þ


so the displacement


x ¼ C1 e�rt=2m eþiðs=m�r 2=4m 2Þ 1=2
t þ C2 e�rt=2m e�iðs=m�r 2=4m 2Þ 1=2


t


The bracket has the dimensions of inverse time; that is, of frequency, and can be written


ðs=m � r 2=4m2Þ1=2 ¼ ! 0, so that the second exponential becomes ei! 0t ¼ cos! 0tþ
i sin! 0t: This shows that the behaviour of the displacement x is oscillatory with a new


frequency ! 0 < ! ¼ ðs=mÞ1=2
, the frequency of ideal simple harmonic motion. To compare


the behaviour of the damped oscillator with the ideal case we should like to express the


solution in a form similar to x ¼ A sinð! 0t þ �Þ as in the ideal case, where ! has been


replaced by ! 0.
We can do this by writing


x ¼ e�rt=2mðC1 e i! 0t þ C2 e�i! 0tÞ


If we now choose


C1 ¼ A


2i
e i�


and


C2 ¼ � A


2i
e�i�


where A and � (and thus ei�) are constants which depend on the motion at t ¼ 0, we find


after substitution


x ¼ A e�rt=2m ½eið! 0tþ�Þ � e�ið! 0tþ�Þ	
2i


¼ A e�rt=2msinð! 0t þ �Þ


This procedure is equivalent to imposing the boundary condition x ¼ A sin� at t ¼ 0


upon the solution for x. The displacement therefore varies sinusoidally with time as in the


case of simple harmonic motion, but now has a new frequency


! 0 ¼ s


m
� r 2


4m2


� �1=2
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and its amplitude A is modified by the exponential term e�rt=2m, a term which decays with


time.


If x ¼ 0 at t ¼ 0 then � ¼ 0; Figure 2.4 shows the behaviour of x with time, its


oscillations gradually decaying with the envelope of maximum amplitudes following the


dotted curve e�rt=2m. The constant A is obviously the value to which the amplitude would


have risen at the first maximum if no damping were present.


The presence of the force term r _xx in the equation of motion therefore introduces a loss of


energy which causes the amplitude of oscillation to decay with time as e�rt=2m.


(Problem 2.3)


Methods of Describing the Damping of an Oscillator


Earlier in this chapter we saw that the energy of an oscillator is given by


E ¼ 1
2


ma2!2 ¼ 1
2


sa2


that is, proportional to the square of its amplitude.


We have just seen that in the presence of a damping force r _xx the amplitude decays with


time as


e�rt=2m


so that the energy decay will be proportional to


ðe�rt=2mÞ2


that is, e�rt=m. The larger the value of the damping force r the more rapid the decay of the


amplitude and energy. Thus we can use the exponential factor to express the rates at which


the amplitude and energy are reduced.


τ′ τ′2
t


r t
2m


r  
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2


s
m 


e


<


D
is


pl
ac


em
en


t


−


Figure 2.4 Damped oscillatory motion where s=m > r 2=4m 2. The amplitude decays with e�rt=2m,
and the reduced angular frequency is given by ! 02 ¼ s=m � r 2=4m2
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Logarithmic Decrement


This measures the rate at which the amplitude dies away. Suppose in the expression


x ¼ A e�rt=2m sinð! 0t þ �Þ


we choose


� ¼ 	=2


and we write


x ¼ A0 e�rt=2m cos! 0t


with x ¼ A0 at t ¼ 0. Its behaviour will follow the curve in Figure 2.5.


If the period of oscillation is 
 0 where ! 0 ¼ 2	=
 0, then one period later the amplitude is


given by


A1 ¼ A0 e ð�r=2mÞ
 0


so that


A0


A1


¼ e r
 0=2m ¼ e �


A0


At


A2


t0


τ ′ τ ′


τ ′


τ ′


e
r


2m t


e
r


2m


(2    )
e


r
2m


−


−


−


Figure 2.5 The logarithmic ratio of any two amplitudes one period apart is the logarithmic
decrement, defined as � ¼ logeðAn=Anþ1Þ ¼ r
 0=2m
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where


� ¼ r


2m

 0 ¼ loge


A0


A1


is called the logarithmic decrement. (Note that this use of � differs from that in Figure 1.11).


The logarithmic decrement � is the logarithm of the ratio of two amplitudes of oscillation


which are separated by one period, the larger amplitude being the numerator since e � > 1.


Similarly


A0


A2


¼ e rð2
 0Þ=2m ¼ e2�


and


A0


An


¼ en�


Experimentally, the value of � is best found by comparing amplitudes of oscillations


which are separated by n periods. The graph of


loge


A0


An


versus n for different values of n has a slope �.


Relaxation Time or Modulus of Decay


Another way of expressing the damping effect is by means of the time taken for the


amplitude to decay to


e�1 ¼ 0:368


of its original value A0. This time is called the relaxation time or modulus of decay and the


amplitude


At ¼ A0 e�rt=2m ¼ A0 e�1


at a time t ¼ 2m=r.


Measuring the natural decay in terms of the fraction e�1 of the original value is a very


common procedure in physics. The time for a natural decay process to reach zero is, of


course, theoretically infinite.


(Problem 2.4)


The Quality Factor or Q-value of a Damped Simple Harmonic Oscillator


This measures the rate at which the energy decays. Since the decay of the amplitude is


represented by


A ¼ A0 e�rt=2m
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the decay of energy is proportional to


A2 ¼ A2
0 e ð�rt=2mÞ 2


and may be written


E ¼ E0 e ð�r=mÞt


where E0 is the energy value at t ¼ 0.


The time for the energy E to decay to E0 e�1 is given by t ¼ m=r s during which time the


oscillator will have vibrated through ! 0m=r rad.


We define the quality factor


Q ¼ ! 0m


r


as the number of radians through which the damped system oscillates as its energy


decays to


E ¼ E0 e�1


If r is small, then Q is very large and


s


m
� r 2


4m2


so that


! 0  !0 ¼ s


m


� �1=2


Thus, we write, to a very close approximation,


Q ¼ !0m


r


which is a constant of the damped system.


Since r=m now equals !0=Q we can write


E ¼ E0 e ð�r=mÞt ¼ E0 e�! 0t=Q


The fact that Q is a constant ð¼ !0m=rÞ implies that the ratio


energy stored in system


energy lost per cycle
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is also a constant, for


Q


2	
¼ !0m


2	r
¼ �0m


r


is the number of cycles (or complete oscillations) through which the system moves in


decaying to


E ¼ E0 e�1


and if


E ¼ E0 e ð�r=mÞt


the energy lost per cycle is


��E ¼ dE


dt
�t ¼ �r


m
E


1


� 0


where �t ¼ 1=� 0 ¼ 
 0, the period of oscillation.


Thus, the ratio


energy stored in system


energy lost per cycle
¼ E


��E
¼ � 0m


r
 �0m


r


¼ Q


2	


In the next chapter we shall meet the same quality factor Q in two other roles, the first as


a measure of the power absorption bandwidth of a damped oscillator driven near its


resonant frequency and again as the factor by which the displacement of the oscillator


is amplified at resonance.


Example on the Q-value of a Damped Simple Harmonic Oscillator


An electron in an atom which is freely radiating power behaves as a damped simple


harmonic oscillator.


If the radiated power is given by P ¼ q2!4x2
0=12	"0c3 W at a wavelength of 0.6mm


(6000 Å), show that the Q-value of the atom is about 108 and that its free radiation lifetime


is about 10�8s (the time for its energy to decay to e�1 of its original value).


q ¼ 1:6 � 10�19C


1=4	"0 ¼ 9 � 109 m F�1


me ¼ 9 � 10�31 kg


c ¼ 3 � 108 m s�1


x0 ¼ maximum amplitude of oscillation


The radiated power P is ���E, where ��E is the energy loss per cycle, and the energy of


the oscillator is given by E ¼ 1
2


me!
2x2


0.
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Thus, Q ¼ 2	E=��E ¼ �	me!
2x2


0=P, and inserting the values above with ! ¼ 2	� ¼
2	c=�, where the wavelength � is given, yields a Q value of � 5 � 107.


The relation Q ¼ !t gives t, the radiation lifetime, a value of � 10�8 s.


Energy Dissipation


We have seen that the presence of the resistive force reduces the amplitude of oscillation


with time as energy is dissipated.


The total energy remains the sum of the kinetic and potential energies


E ¼ 1
2


m _xx2 þ 1
2


sx2


Now, however, dE=dt is not zero but negative because energy is lost, so that


dE


dt
¼ d


dt
ð1


2
m _xx2 þ 1


2
sx2Þ ¼ _xxðm€xx þ sxÞ


¼ _xxð�r _xxÞ for m _xx þ r _xx þ sx ¼ 0


i.e. dE=dt ¼ �r _xx2, which is the rate of doing work against the frictional force (dimensions


of force � velocity ¼ force � distance/time).


(Problems 2.5, 2.6)


Damped SHM in an Electrical Circuit


The force equation in the mechanical oscillator is replaced by the voltage equation in the


electrical circuit of inductance, resistance and capacitance (Figure 2.6).


IR


IR


+
+


+


+ +


−
−


dI
dt


L


dI
dt


L


q
C


q
C


= 0


−


Figure 2.6 Electrical circuit of inductance, capacitance and resistance capable of damped simple
harmonic oscillations. The sum of the voltages around the circuit is given from Kirchhoff ’s law


as L
dI


dt
þ RI þ q


C
¼ 0
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We have, therefore,


L
dI


dt
þ RI þ q


C
¼ 0


or


L€qq þ R _qq þ q


C
¼ 0


and by comparison with the solutions for x in the mechanical case we know immediately


that the charge


q ¼ q0 e�Rt=2L�ðR 2=4L 2�1=LCÞ 1=2
t


which, for 1=LC > R2=4L2, gives oscillatory behaviour at a frequency


!2 ¼ 1


LC
� R2


4L2


From the exponential decay term we see that R=L has the dimensions of inverse time T �1


or !, so that !L has the dimensions of R; that is, !L is measured in ohms.


Similarly, since !2 ¼ 1=LC; !L ¼ 1=!C, so that 1=!C is also measured in ohms. We


shall use these results in the next chapter.


(Problems 2.7, 2.8, 2.9)


Problem 2.1
The heavily damped simple harmonic system of Figure 2.2 is displaced a distance F from its


equilibrium position and released from rest. Show that in the expression for the displacement


x ¼ e�ptðF cosh qt þ G sinh qtÞ


where


p ¼ r


2m
and q ¼ r 2


4m 2
� s


m


� �1=2


that the ratio


G


F
¼ r


ðr 2 � 4msÞ 1=2


Problem 2.2
Verify that the solution


x ¼ ðA þ BtÞe�rt=2m
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satisfies the equation


m€xx þ r _xx þ sx ¼ 0


when


r 2=4m2 ¼ s=m


Problem 2.3
The solution for damped simple harmonic motion is given by


x ¼ e�rt=2mðC 1 e i! 0t þ C 2 e�i! 0tÞ


If x ¼ A cos� at t ¼ 0, find the values of C 1 and C 2 to show that _xx  �! 0A sin� at t ¼ 0 only if r=m


is very small or �  	=2.


Problem 2.4
A capacitance C with a charge q 0 at t ¼ 0 discharges through a resistance R. Use the voltage


equation q=C þ IR ¼ 0 to show that the relaxation time of this process is RC s; that is,


q ¼ q0 e�t=RC


(Note that t=RC is non-dimensional.)


Problem 2.5
The frequency of a damped simple harmonic oscillator is given by


! 02 ¼ s


m
� r 2


4m2
¼ !2


0 �
r 2


4m 2


(a) If !2
0 � ! 02 ¼ 10�6!2


0 show that Q ¼ 500 and that the logarithmic decrement � ¼ 	=500.


(b) If !0 ¼ 106 and m ¼ 10�10 Kg show that the stiffness of the system is 100 N m�1, and that the


resistive constant r is 2 � 10�7 N � sm�1.


(c) If the maximum displacement at t ¼ 0 is 10�2 m, show that the energy of the system is 5 � 10�3


J and the decay to e�1 of this value takes 0.5 ms.


(d) Show that the energy loss in the first cycle is 2	� 10�5 J.


Problem 2.6
Show that the fractional change in the resonant frequency !0ð!2


0 ¼ s=mÞ of a damped simple


harmonic mechanical oscillator is  ð8Q 2Þ�1
where Q is the quality factor.


Problem 2.7
Show that the quality factor of an electrical LCR series circuit is Q ¼ !0L=R where !2


0 ¼ 1=LC


Problem 2.8
A plasma consists of an ionized gas of ions and electrons of equal number densities ðn i ¼ ne ¼ nÞ
having charges of opposite sign �e, and masses m i and m e, respectively, where m i > me. Relative
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displacement between the two species sets up a restoring


+
+
+
+
+
+
+
+
+


−
−
−
−
−
−
−
−
−


E


x


l


electric field which returns the electrons to equilibrium, the ions being considered stationary. In the


diagram, a plasma slab of thickness l has all its electrons displaced a distance x to give a restoring


electric field E ¼ nex=" 0, where " 0 is constant. Show that the restoring force per unit area on the


electrons is xn 2e2l=" 0 and that they oscillate simple harmonically with angular frequency !2
e ¼


ne 2=m e" 0. This frequency is called the electron plasma frequency, and only those radio waves of


frequency ! > ! e will propagate in such an ionized medium. Hence the reflection of such waves


from the ionosphere.


Problem 2.9
A simple pendulum consists of a mass m at the end of a string of length l and performs small


oscillations. The length is very slowly shortened whilst the pendulum oscillates many times at a


constant amplitude l� where � is very small. Show that if the length is changed by ��l the work


done is �mg�l (owing to the elevation of the position of equilibrium) together with an increase in


the pendulum energy


�E ¼ mg
� 2


2
� ml _��2


 !
�l


where � 2 is the average value of � 2 during the shortening. If � ¼ �0 cos!t, show that the energy of


the pendulum at any instant may be written


E ¼ ml 2!2� 2
0


2
¼ mgl� 2


0


2


and hence show that


�E


E
¼ � 1


2


�l


l
¼ ��


�


that is, E=�, the ratio of the energy of the pendulum to its frequency of oscillation remains constant


during the slowly changing process. (This constant ratio under slowly varying conditions is


important in quantum theory where the constant is written as a multiple of Planck’s constant, h.)
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Summary of Important Results


Damped Simple Harmonic Motion


Equation of motion m€xx þ r _xx þ sx ¼ 0


Oscillations when


s


m
>


r 2


4m2


Displacement x ¼ A e�rt=2m cosð! 0t þ �Þ where


! 02 ¼ s


m
� r 2


4m2


Amplitude Decay


Logarithmic decrement �—the logarithm of the ratio of two successive amplitudes one


period 
 0 apart


� ¼ loge


An


Anþ1


¼ r
 0


2m


Relaxation Time


Time for amplitude to decay to A ¼ A0 e�rt=2m ¼ A0 e�1; that is, t ¼ 2m=r


Energy Decay


Quality factor Q is the number of radians during which energy decreases to E ¼ E0 e�1


Q ¼ !0m


r
¼ 2	


energy stored in system


energy lost per cycle


E ¼ E0 e�rt=m ¼ E0 e�1 when Q ¼ !0t


In damped SHM


dE


dt
¼ ðm€xx þ sxÞ _xx ¼ �r _xx2 (work rate of resistive force)


For equivalent expressions in electrical oscillators replace m by L, r by R and s by 1=C.


Force equations become voltage equations.


52 Damped Simple Harmonic Motion







3


The Forced Oscillator


The Operation of i upon a Vector


We have already seen that a harmonic oscillation can be conveniently represented by the


form ei!t. In addition to its mathematical convenience i can also be used as a vector


operator of physical significance. We say that when i precedes or operates on a vector the


direction of that vector is turned through a positive angle (anticlockwise) of �=2, i.e. i


acting as an operator advances the phase of a vector by 90�. The operator � i rotates the


vector clockwise by �=2 and retards its phase by 90�. The mathematics of i as an operator


differs in no way from its use as
ffiffiffiffiffiffiffi
�1


p
and from now on it will play both roles.


The vector r ¼ a þ ib is shown in Figure 3.1, where the direction of b is perpendicular to


that of a because it is preceded by i. The magnitude or modulus or r is written


r ¼ jrj ¼ ða2 þ b2Þ1=2


and


r 2 ¼ ða2 þ b2Þ ¼ ða þ ibÞða � ibÞ ¼ rr	;


where ða � ibÞ ¼ r	 is defined as the complex conjugate of ða þ ibÞ; that is, the sign of i is


changed.


The vector r	 ¼ a � ib is also shown in Figure 3.1.


The vector r can be written as a product of its magnitude r (scalar quantity) and its phase


or direction in the form (Figure 3.1)


r ¼ r ei� ¼ rðcos�þ i sin�Þ
¼ a þ ib


showing that a ¼ r cos� and b ¼ r sin�.
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It follows that


cos� ¼ a


r
¼ a


ða2 þ b2Þ1=2


and


sin� ¼ b


r
¼ b


ða2 þ b2Þ1=2


giving tan� ¼ b=a.


Similarly


r	 ¼ r e�i� ¼ rðcos�� i sin�Þ


cos� ¼ a


r
; sin� ¼ �b


r
and tan� ¼ �b


a
ðFigure 3:1Þ


The reader should confirm that the operator i rotates a vector by �=2 in the positive


direction (as stated in the first paragraph of p. 53) by taking � ¼ �=2 in the expression


r ¼ r ei� ¼ rðcos �=2 þ i sin�=2Þ


Note that � ¼ ��=2 in r ¼ r e�i�=2 rotates the vector in the negative direction.


Vector form of Ohm’s Law


Ohm’s Law is first met as the scalar relation V ¼ IR, where V is the voltage across the


resistance R and I is the current through it. Its scalar form states that the voltage and current


are always in phase. Both will follow a sin ð!t þ �Þ or a cos ð!t þ �Þ curve, and the value


of � will be the same for both voltage and current.


However, the presence of either or both of the other two electrical components,


inductance L and capacitance C, will introduce a phase difference between voltage and


r


r*


a
a


ib


−ib


φ


φ


φ


φ
r = r e


i


φ
r* = r e


−i


r  cos


φir  cos


φ−ir  cos


Figure 3.1 Vector representation using i operator and exponential index. Star superscript indicates
complex conjugate where � i replaces i


54 The Forced Oscillator







current, and Ohm’s Law takes the vector form


V ¼ IZe;


where Ze, called the impedance, replaces the resistance, and is the vector sum of the


effective resistances of R, L, and C in the circuit.


When an alternating voltage Va of frequency ! is applied across a resistance, inductance


and condenser in series as in Figure 3.2a, the balance of voltages is given by


Va ¼ IR þ L
dI


dt
þ q=C


and the current through the circuit is given by I ¼ I0 e i!t. The voltage across the inductance


VL ¼ L
dI


dt
¼ L


d


dt
I0 e i!t ¼ i!LI0 e i!t ¼ i!LI


But !L, as we saw at the end of the last chapter, has the dimensions of ohms, being the


value of the effective resistance presented by an inductance L to a current of frequency !.


The product !LI with dimensions of ohms times current, i.e. volts, is preceded by i; this


tells us that the phase of the voltage across the inductance is 90� ahead of that of the current


through the circuit.


Similarly, the voltage across the condenser is


q


C
¼ 1


C


ð
I dt ¼ 1


C
I0


ð
ei!t dt ¼ 1


i!C
I0 e i!t ¼ � iI


!C


(since 1=i ¼ �i).


Again 1=!C, measured in ohms, is the value of the effective resistance presented by the


condenser to the current of frequency !. Now, however, the voltage I=!C across the


condenser is preceded by �i and therefore lags the current by 90�. The voltage and current


across the resistance are in phase and Figure 3.2b shows that the vector form of Ohm’s


Law may be written V ¼ IZ e ¼ I½R þ ið!L � 1=!CÞ�, where the impedance Ze ¼
R þ ið!L � 1=!CÞ. The quantities !L and 1=!C are called reactances because they


+++ −−− IR


I = I0eiωt


q
C


dI
dtL


Va


Figure 3.2a An electrical forced oscillator. The voltage Va is applied to the series LCR circuit giving
Va ¼ Ld I=dt þ IR þ q=C
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introduce a phase relationship as well as an effective resistance, and the bracket


ð!L � 1=!CÞ is often written Xe, the reactive component of Z e.


The magnitude, in ohms, i.e. the value of the impedance, is


Ze ¼ R2 þ !L � 1


!C


� �2
" #1=2


and the vector Ze may be represented by its magnitude and phase as


Ze ¼ Ze ei� ¼ Zeðcos�þ i sin�Þ


so that


cos� ¼ R


Ze


; sin� ¼ Xe


Ze


and


tan� ¼ Xe=R;


where � is the phase difference between the total voltage across the circuit and the current


through it.


The value of � can be positive or negative depending on the relative value of !L and


1=!C: when !L > 1=!C; � is positive, but the frequency dependence of the components


show that � can change both sign and size.


The magnitude of Z e is also frequency dependent and has its minimum value Ze ¼ R


when !L ¼ 1=!C.


In the vector form of Ohm’s Law, V ¼ IZe. If V ¼ V0 e i!t and Ze ¼ Ze ei�, then we have


I ¼ V0 e i!t


Ze ei�
¼ V0


Ze


eið!t��Þ


giving a current of amplitude V0=Ze which lags the voltage by a phase angle �.


The Impedance of a Mechanical Circuit


Exactly similar arguments hold when we consider not an electrical oscillator but a


mechanical circuit having mass, stiffness and resistance.


R


iωL iXe =i   ωL −        


ωC−i
1


ωC
1 i  ωL −        ωC


1
φ
R


Ze


Figure 3.2b Vector addition of resistance and reactances to give the electrical impedance Ze ¼
R þ ið!L � 1=!CÞ
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The mechanical impedance is defined as the force required to produce unit velocity in


the oscillator, i.e. Zm ¼ F=v or F ¼ vZm.


Immediately, we can write the mechanical impedance as


Zm ¼ r þ i !m � s


!


� �
¼ r þ iXm


where


Zm ¼ Zm ei�


and


tan� ¼ Xm=r


� being the phase difference between the force and the velocity. The magnitude of Zm ¼
½r 2 þ ð!m � s=!Þ2�1=2


.


Mass, like inductance, produces a positive reactance, and the stiffness behaves in exactly


the same way as the capacitance.


Behaviour of a Forced Oscillator


We are now in a position to discuss the physical behaviour of a mechanical oscillator of


mass m, stiffness s and resistance r being driven by an alternating force F0 cos!t, where F0


is the amplitude of the force (Figure 3.3). The equivalent electrical oscillator would be an


alternating voltage V0 cos!t applied to the circuit of inductance L, capacitance C and


resistance R in Figure 3.2a.


The mechanical equation of motion, i.e. the dynamic balance of forces, is given by


m€xx þ r _xx þ sx ¼ F0 cos!t


and the voltage equation in the electrical case is


L€qq þ R _qq þ q=C ¼ V0 cos!t


We shall analyse the behaviour of the mechanical system but the analysis fits the electrical


oscillator equally well.


mr


s


F0 cos ωt


Figure 3.3 Mechanical forced oscillator with force F0 cos!t applied to damped mechanical circuit
of Figure 2.1
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The complete solution for x in the equation of motion consists of two terms:


(1) a ‘transient’ term which dies away with time and is, in fact, the solution to the equation


m€xx þ r _xx þ sx ¼ 0 discussed in Chapter 2. This contributes the term


x ¼ C e�rt=2m eiðs=m�r 2=4m 2Þ 1=2
t


which decays with e�rt=2m. The second term


(2) is called the ‘steady state’ term, and describes the behaviour of the oscillator after the


transient term has died away.


Both terms contribute to the solution initially, but for the moment we shall concentrate


on the ‘steady state’ term which describes the ultimate behaviour of the oscillator.


To do this we shall rewrite the force equation in vector form and represent cos!t by ei!t


as follows:


m€xx þ r _xx þ sx ¼ F0 e i!t ð3:1Þ


Solving for the vector x will give both its magnitude and phase with respect to the driving


force F0 e i!t. Initially, let us try the solution x ¼ A ei!t, where A may be complex, so that it


may have components in and out of phase with the driving force.


The velocity


_xx ¼ i!A ei!t ¼ i!x


so that


€xx ¼ i 2!2x ¼ �!2x


and equation (3.1) becomes


ð�A!2m þ i!Ar þ AsÞ ei!t ¼ F0 e i!t


which is true for all t when


A ¼ F0


i!r þ ðs � !2mÞ


or, after multiplying numerator and denominator by �i


A ¼ �iF0


!½r þ ið!m � s=!Þ� ¼
�iF0


!Zm


Hence


x ¼ A e i!t ¼ �iF0 e i!t


!Zm


¼ �iF0 e i!t


!Zm ei�


¼ �iF0 e ið!t��Þ


!Zm
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where


Zm ¼ ½r 2 þ ð!m � s=!Þ2�1=2


This vector form of the steady state behaviour of x gives three pieces of information and


completely defines the magnitude of the displacement x and its phase with respect to the


driving force after the transient term dies away. It tells us


1. That the phase difference � exists between x and the force because of the reactive part


ð!m � s=!Þ of the mechanical impedance.


2. That an extra difference is introduced by the factor �i and even if � were zero the


displacement x would lag the force F0 cos!t by 90�.


3. That the maximum amplitude of the displacement x is F0=!Zm. We see that this is


dimensionally correct because the velocity x=t has dimensions F0=Zm.


Having used F0 e i!t to represent its real part F0 cos!t, we now take the real part of the


solution


x ¼ �iF0 e ið!t��Þ


!Zm


to obtain the actual value of x. (If the force had been F0 sin!t, we would now take that part


of x preceded by i.)


Now


x ¼ � iF0


!Zm


eið!t��Þ


¼ � iF0


!Zm


½cos ð!t � �Þ þ i sin ð!t � �Þ�


¼ � iF0


!Zm


cos ð!t � �Þ þ F0


!Zm


sin ð!t � �Þ


The value of x resulting from F0 cos!t is therefore


x ¼ F0


!Zm


sin ð!t � �Þ


[the value of x resulting from F0 sin!t would be �F0 cos ð!t � �Þ=!Zm�.
Note that both of these solutions satisfy the requirement that the total phase difference


between displacement and force is � plus the ��=2 term introduced by the �i factor. When


� ¼ 0 the displacement x ¼ F0 sin!t=!Zm lags the force F0 cos!t by exactly 90�.
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To find the velocity of the forced oscillation in the steady state we write


v ¼ _xx ¼ ði!Þ ð�iF0Þ
!Zm


eið!t��Þ


¼ F0


Zm


eið!t��Þ


We see immediately that


1. There is no preceding i factor so that the velocity v and the force differ in phase only


by �, and when � ¼ 0 the velocity and force are in phase.


2. The amplitude of the velocity is F0=Zm, which we expect from the definition of


mechanical impedance Zm ¼ F=v.


Again we take the real part of the vector expression for the velocity, which will


correspond to the real part of the force F0 e i!t. This is


v ¼ F0


Zm


cos ð!t � �Þ


Thus, the velocity is always exactly 90� ahead of the displacement in phase and differs


from the force only by a phase angle �, where


tan� ¼ !m � s=!


r
¼ Xm


r


so that a force F0 cos!t gives a displacement


x ¼ F0


!Zm


sin ð!t � �Þ


and a velocity


v ¼ F0


Zm


cos ð!t � �Þ


(Problems 3.1, 3.2, 3.3, 3.4)


Behaviour of Velocity vv in Magnitude and Phase versus Driving
Force Frequency x


The velocity amplitude is


F0


Zm


¼ F0


½r 2 þ ð!m � s=!Þ2�1=2


so that the magnitude of the velocity will vary with the frequency ! because Zm is


frequency dependent.
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At low frequencies, the term �s=! is the largest term in Zm and the impedance is said to


be stiffness controlled. At high frequencies !m is the dominant term and the impedance is


mass controlled. At a frequency !0 where !0m ¼ s=!0, the impedance has its minimum


value Zm ¼ r and is a real quantity with zero reactance.


The velocity F0=Zm then has its maximum value v ¼ F0=r, and !0 is said to be the


frequency of velocity resonance. Note that tan� ¼ 0 at !0, the velocity and force being in


phase.


The variation of the magnitude of the velocity with driving frequency, !, is shown in


Figure 3.4, the height and sharpness of the peak at resonance depending on r, which is the


only effective term of Zm at !0.


The expression


v ¼ F0


Zm


cos ð!t � �Þ


where


tan� ¼ !m � s=!


r


shows that for positive �; that is, !m > s=!, the velocity v will lag the force because ��
appears in the argument of the cosine. When the driving force frequency ! is very high and


!! 1, then �! 90� and the velocity lags the force by that amount.


When !m < s=!; � is negative, the velocity is ahead of the force in phase, and at low


driving frequencies as !! 0 the term s=!! 1 and �! �90�.
Thus, at low frequencies the velocity leads the force (� negative) and at high frequencies


the velocity lags the force (� positive).


At the frequency !0, however, !0m ¼ s=!0 and � ¼ 0, so that velocity and force are in


phase. Figure 3.5 shows the variation of � with ! for the velocity, the actual shape of the


curves depending upon the value of r.


V
el


oc
ity


F0
r


ω0 = (s/m)


ω
1
2


Figure 3.4 Velocity of forced oscillator versus driving frequency !. Maximum velocity vmax ¼ F0=r
at !2


0 ¼ s=m
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(Problem 3.5)


Behaviour of Displacement versus Driving Force Frequency x


The phase of the displacement


x ¼ F0


!Zm


sin ð!t � �Þ


is at all times exactly 90� behind that of the velocity. Whilst the graph of � versus !
remains the same, the total phase difference between the displacement and the force


involves the extra 90� retardation introduced by the �i operator. Thus, at very low


frequencies, where � ¼ ��=2 rad and the velocity leads the force, the displacement and


the force are in phase as we should expect. At high frequencies the displacement lags the


force by � rad and is exactly out of phase, so that the curve showing the phase angle


between the displacement and the force is equivalent to the � versus ! curve, displaced by


an amount equal to �=2 rad. This is shown in Figure 3.6.


The amplitude of the displacement x ¼ F0=!Zm, and at low frequencies Zm ¼
½r 2 þ ð!m � s=!Þ2�1=2 ! s=!, so that x � F0=ð!s=!Þ ¼ F0=s:


Total phase
angle (radians)
between
x and F


x and F in phase


x lags F by      rad


x lags F 


π
2


π
2


π
2


−


π
2


−0


ω0


r increasing
Phase angle
   (red)φ0ω


− π


Figure 3.6 Variation of total phase angle between displacement and driving force versus driving
frequency !. The total phase angle is ��� �=2 rad
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v lags F
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Figure 3.5 Variation of phase angle � versus driving frequency, where � is the phase angle between
the velocity of the forced oscillator and the driving force. � ¼ 0 at velocity resonance. Each curve
represents a fixed resistance value
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At high frequencies Zm ! !m, so that x � F0=ð!2mÞ, which tends to zero as ! becomes


very large. At very high frequencies, therefore, the displacement amplitude is almost zero


because of the mass-controlled or inertial effect.


The velocity resonance occurs at !2
0 ¼ s=m, where the denominator Zm of the velocity


amplitude is a minimum, but the displacement resonance will occur, since x ¼ ðF0=!ZmÞ
sin ð!t � �Þ, when the denominator !Zm is a minimum. This takes place when


d


d!
ð!ZmÞ ¼


d


d!
!½r 2 þ ð!m � s=!Þ2�1=2 ¼ 0


i.e. when


2!r 2 þ 4!mð!2m � sÞ ¼ 0


or


2!½r 2 þ 2mð!2m � sÞ� ¼ 0


so that either


! ¼ 0


or


!2 ¼ s


m
� r 2


2m2
¼ !2


0 �
r 2


2m2


Thus the displacement resonance occurs at a frequency slightly less than !0, the


frequency of velocity resonance. For a small damping constant r or a large mass m these


two resonances, for all practical purposes, occur at the frequency !0.


Denoting the displacement resonance frequency by


! r ¼
s


m
� r 2


2m2


� �1=2


we can write the maximum displacement as


xmax ¼ F0


! rZm


The value of ! rZm at ! r is easily shown to be equal to ! 0r where


! 02 ¼ s


m
� r 2


4m2
¼ !2


0 �
r 2


4m2


The value of x at displacement resonance is therefore given by


xmax ¼ F0


! 0r


where


! 0 ¼ !2
0 �


r 2


4m2


� �1=2
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Since xmax ¼ F0=!
0r at resonance, the amplitude at resonance is kept low by increasing


r and the variation of x with ! for different values of r is shown in Figure 3.7. A negligible


value of r produces a large amplification at resonance: this is the basis of high selectivity in


a tuned radio circuit (see the section in this chapter on Q as an amplification factor).


Keeping the resonance amplitude low is the principle of vibration insulation.


(Problems 3.6, 3.7)


Problem on Vibration Insulation


A typical vibration insulator is shown in Figure 3.8. A heavy base is supported on a


vibrating floor by a spring system of stiffness s and viscous damper r. The insulator will


generally operate at the mass controlled end of the frequency spectrum and the resonant


frequency is designed to be lower than the range of frequencies likely to be met. Suppose


the vertical vibration of the floor is given by x ¼ A cos!t about its equilibrium position and


y is the corresponding vertical displacement of the base about its rest position. The function


of the insulator is to keep the ratio y=A to a minimum.


The equation of motion is given by


m€yy ¼ �rð _yy � _xxÞ � sðy � xÞ


ωω0


F0


S


D
is


pl
ac


em
en


t x


r increasing


Figure 3.7 Variation of the displacement of a forced oscillator versus driving force frequency ! for
various values of r
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which, if y � x ¼ X, becomes


m€XX þ r _XX þ sX ¼ �m€xx ¼ mA!2 cos!t


¼ F0 cos!t;


where


F0 ¼ mA!2


Use the steady state solution of X to show that


y ¼ F0


!Zm


sin ð!t � �Þ þ A cos!t


and (noting that y is the superposition of two harmonic components with a constant phase


difference) show that


ymax


A
¼ ðr 2 þ s2=!2Þ1=2


Zm


where


Z 2
m ¼ r 2 þ ð!m � s=!Þ2


Note that


ymax


A
> 1 if !2 <


2s


m


r


y


Vibrating floor


x = A cos ωt


Fixed reference level


Heavy base


Equilibrium
rest position
of base


Figure 3.8 Vibration insulator. A heavy base supported by a spring and viscous damper system on a
vibrating floor
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so that s=m should be as low as possible to give protection against a given frequency !.


(a) Show that


ymax


A
¼ 1 for !2 ¼ 2s


m


(b) Show that


ymax


A
< 1 for !2 >


2s


m


(c) Show that if !2 ¼ s=m, then ymax=A > 1 but that the damping term r is helpful in


keeping the motion of the base to a reasonably low level.


(d) Show that if !2 > 2s=m, then ymax=A < 1 but damping is detrimental.


Significance of the Two Components of the Displacement Curve


Any single curve of Figure 3.7 is the superposition of the two component curves (a) and (b)


in Figure 3.9, for the displacement x may be rewritten


x ¼ F0


!Zm


sin ð!t � �Þ ¼ F0


!Zm


ðsin!t cos�� cos!t sin�Þ


(b)
F0
ω


ω


r


r


r 
2 + Xm 


2


2m


(a)
F0
ω


ω0 ω0 ω0


r 
2 +


+


Xm 
2


Xm 


F0 
l ω′r


F0 
l ω0r


F0 
l 2ω0r
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r
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Figure 3.9 A typical curve of Figure 3.7 resolved into its ‘anti-phase’ component (curve (a)) and its
‘90� out of phase’ component (curve (b)). Curve (b) represents the resistive fraction of the
impedance and curve (a) the reactive fraction. Curve (b) corresponds to absorption and curve (a) to
anomalous dispersion of an electromagnetic wave in a medium having an atomic or molecular resonant
frequency equal to the frequency of the wave
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or, since


cos� ¼ r


Zm


and sin� ¼ Xm


Zm


as


x ¼ F0


!Zm


r


Zm


sin!t � F0


!Zm


Xm


Zm


cos!t


The cos!t component (with a negative sign) is exactly anti-phase with respect to the


driving force F0 cos!t. Its amplitude, plotted as curve (a) may be expressed as


�F0


!


Xm


Z 2
m


¼ F0 mð!2
0 � !2Þ


m2ð!2
0 � !2Þ2 þ !2r 2


ð3:2Þ


where !2
0 ¼ s=m and !0 is the frequency of velocity resonance.


The sin!t component lags the driving force F0 cos!t by 90�. Its amplitude plotted as


curve (b) becomes


F0


!


r


r 2 þ X 2
m


¼ F0!r


m2ð!2
0 � !2Þ2 þ !2r 2


We see immediately that at !0 curve (a) is zero and curve (b) is near its maximum but they


combine to give a maximum at ! where


!2 ¼ !2
0 �


r 2


2m2


the resonant frequency for amplitude displacement.


These curves are particularly familiar in the study of optical dispersion where the forced


oscillator is an electron in an atom and the driving force is the oscillating field vector of an


electromagnetic wave of frequency !. When ! is the resonant frequency of the electron in


the atom, the atom absorbs a large amount of energy from the electromagnetic wave and


curve (b) is the shape of the characteristic absorption curve. Note that curve (b) represents


the dissipating or absorbing fraction of the impedance


r


ðr 2 þ X 2
mÞ


1=2


and that part of the displacement which lags the driving force by 90�. The velocity


associated with this component will therefore be in phase with the driving force and it is


this part of the velocity which appears in the energy loss term r _xx2 due to the resistance of


the oscillator and which gives rise to absorption.
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On the other hand, curve (a) represents the reactive or energy storing fraction of the


impedance


Xm


ðr 2 þ X 2
mÞ


1=2


and the reactive components in a medium determine the velocity of the waves in


the medium which in turn governs the refractive index n. In fact, curve (a) is a graph of the


value of n2 in a region of anomalous dispersion where the ! axis represents the value


n ¼ 1. These regions occur at every resonant frequency of the constituent atoms of


the medium. We shall return to this topic later in the book.


(Problems 3.8, 3.9, 3.10)


Power Supplied to Oscillator by the Driving Force


In order to maintain the steady state oscillations of the system the driving force must


replace the energy lost in each cycle because of the presence of the resistance. We shall


now derive the most important result that:


‘in the steady state the amplitude and phase of a driven oscillator adjust themselves so


that the average power supplied by the driving force just equals that being dissipated by the


frictional force’.


The instantaneous power P supplied is equal to the product of the instantaneous driving


force and the instantaneous velocity; that is,


P ¼ F0 cos!t
F0


Zm


cos ð!t � �Þ


¼ F 2
0


Zm


cos!t cos ð!t � �Þ


The average power


Pav ¼ total work per oscillation


oscillation period


;Pav ¼
ð T


0


P dt


T
where T ¼ oscillation period


¼ F 2
0


ZmT


ð T


0


cos!t cos ð!t � �Þ dt


¼ F 2
0


ZmT


ð T


0


½cos2!t cos�þ cos!t sin!t sin�Þ dt


¼ F 2
0


2Zm


cos�
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because ð T


0


cos!t � sin!t dt ¼ 0


and


1


T


ð T


0


cos2 !t dt ¼ 1


2


The power supplied by the driving force is not stored in the system, but dissipated as


work expended in moving the system against the frictional force r _xx.


The rate of working (instantaneous power) by the frictional force is


ðr _xxÞ _xx ¼ r _xx2 ¼ r
F 2


0


Z 2
m


cos2ð!t � �Þ


and the average value of this over one period of oscillation


1


2


rF 2
0


Z 2
m


¼ 1


2


F 2
0


Zm


cos� for
r


Zm


¼ cos�


This proves the initial statement that the power supplied equals the power dissipated.


In an electrical circuit the power is given by VI cos�, where V and I are the instantaneous


r.m.s. values of voltage and current and cos� is known as the power factor.


VI cos� ¼ V 2


Ze


cos� ¼ V 2
0


2Ze


cos�


since


V ¼ V0ffiffiffi
2


p


(Problem 3.11)


Variation of Pav with x. Absorption Resonance Curve


Returning to the mechanical case, we see that the average power supplied


P av ¼ ðF 2
0=2ZmÞ cos�


is a maximum when cos� ¼ 1; that is, when � ¼ 0 and !m � s=! ¼ 0 or !2
0 ¼ s=m. The


force and the velocity are then in phase and Zm has its minimum value of r. Thus


P av(maximum) ¼ F 2
0=2r
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A graph of P av versus !, the frequency of the driving force, is shown in Figure 3.10. Like


the curve of displacement versus !, this graph measures the response of the oscillator; the


sharpness of its peak at resonance is also determined by the value of the damping constant


r, which is the only term remaining in Zm at the resonance frequency !0. The peak occurs


at the frequency of velocity resonance when the power absorbed by the system from the


driving force is a maximum; this curve is known as the absorption curve of the oscillator


(it is similar to curve (b) of Figure 3.9).


The Q-Value in Terms of the Resonance Absorption Bandwidth


In the last chapter we discussed the quality factor of an oscillator system in terms of energy


decay. We may derive the same parameter in terms of the curve of Figure 3.10, where the


sharpness of the resonance is precisely defined by the ratio


Q ¼ !0


!2 � !1


;


where !2 and !1 are those frequencies at which the power supplied


P av ¼ 1
2


P av(maximum)


The frequency difference !2 � !1 is often called the bandwidth.


ω0 ω2 ωω1


  F 0
2


 Pav(max)


2r


4r


=


F 0
2


Figure 3.10 Graph of average power versus ! supplied to an oscillator by the driving force.
Bandwidth !2 � !1 of resonance curve defines response in terms of the quality factor, Q ¼
!0=ð!2 � !1Þ, where !2


0 ¼ s=m
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Now


P av ¼ rF 2
0=2Z 2


m ¼ 1
2


P av (maximum) ¼ 1
2


F 2
0=2r


when


Z 2
m ¼ 2r 2


that is, when


r 2 þ X 2
m ¼ 2r 2 or Xm ¼ !m � s=! ¼ �r:


If !2 > !1, then


!2m � s=!2 ¼ þr


and


!1m � s=!1 ¼ �r


Eliminating s between these equations gives


!2 � !1 ¼ r=m


so that


Q ¼ !0m=r


Note that !1 ¼ !0 � r=2m and !2 ¼ !0 þ r=2m are the two significant frequencies in


Figure 3.9. The quality factor of an electrical circuit is given by


Q ¼ !0L


R
;


where


!2
0 ¼ ðLCÞ�1


Note that for high values of Q, where the damping constant r is small, the frequency ! 0


used in the last chapter to define Q ¼ ! 0m=r moves very close to the frequency !0, and the


two definitions of Q become equivalent to each other and to the third definition we meet in


the next section.


The Q-Value as an Amplification Factor


We have seen that the value of the displacement at resonance is given by


Amax ¼ F0


! 0r
where ! 02 ¼ s


m
� r 2


4m2


The Q-Value as an Amplification Factor 71







At low frequencies ð!! 0Þ the displacement has a value A0 ¼ F0=s, so that


Amax


A0


� �2


¼ F 2
0


! 02r 2


s2


F 2
0


¼ m2!4
0


r 2½!2
0 � r 2=4m2�


¼ ! 2
0 m2


r 2½1 � 1=4Q2�1=2�
¼ Q2


½1 � 1=4Q2�


Hence:


Amax


A0


¼ Q


½1 � 1=4Q2�1=2
� Q 1 þ 1


8Q2


	 

� Q


for large Q.
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Figure 3.11 Curves of Figure 3.7 now given in terms of the quality factor Q of the system, where Q
is amplification at resonance of low frequency response x ¼ F0=s
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Thus, the displacement at low frequencies is amplified by a factor of Q at displacement


resonance.


Figure 3.7 is now shown as Figure 3.11 where the Q-values have been attached to each


curve. In tuning radio circuits, the Q-value is used as a measure of selectivity, where


the sharpness of response allows a signal to be obtained free from interference from signals


at nearby frequencies. In conventional radio circuits at frequencies of one megacycle,
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A2


A3A4A0


A1


A2


A3


A4


A1


BOB


Steady state vector


0


(b)


(a)


At t = 0 , transient vector = BO = BA0


t = 0
t


Figure 3.12 (a) The steady state oscillation (heavy curve) is modulated by the transient which
decays exponentially with time. (b) In the vector diagram of (b) OB is the constant length steady
state vector and BA1 is the transient vector. Each vector rotates anti-clockwise with its own angular
velocity. At t ¼ 0 the vectors OB and BA0 are equal and opposite on the horizontal axis and their
vector sum is zero. At subsequent times the total amplitude is the length of OA1 which changes as A
traces a contracting spiral around B. The points A1, A2, A3 and A4 indicate how the amplitude is
modified in (a)
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Q-values are of the order of a few hundred; at higher radio frequencies resonant copper


cavities have Q-values of about 30 000 and piezo-electric crystals can produce Q-values of


500 000. Optical absorption in crystals and nuclear magnetic resonances are often


described in terms of Q-values. The Mössbauer effect in nuclear physics involves Q-values


of 1010.


The Effect of the Transient Term


Throughout this chapter we have considered only the steady state behaviour without


accounting for the transient term mentioned on p. 58. This term makes an initial


contribution to the total displacement but decays with time as e�rt=2m. Its effect is best


displayed by considering the vector sum of the transient and steady state components.


The steady state term may be represented by a vector of constant length rotating


anticlockwise at the angular velocity ! of the driving force. The vector tip traces a circle.


Upon this is superposed the transient term vector of diminishing length which rotates anti


clockwise with angular velocity ! 0 ¼ ðs=m � r 2=4m2Þ1=2
. Its tip traces a contracting spiral.


The locus of the magnitude of the vector sum of these terms is the envelope of the


varying amplitudes of the oscillator. This envelope modulates the steady state oscillations


of frequency ! at a frequency which depends upon ! 0 and the relative phase between !t


and ! 0t.
Thus, in Figure 3.12(a) where the total oscillator displacement is zero at time t ¼ 0 we


have the steady state and transient vectors equal and opposite in Figure 3.12(b) but because


! 6¼ ! 0 the relative phase between the vectors will change as the transient term decays.


The vector tip of the transient term is shown as the dotted spiral and the total amplitude


assumes the varying lengths OA1, OA2, OA3, OA4, etc.


(Problems 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18)


Problem 3.1
Show, if F0 e i!t represents F0 sin!t in the vector form of the equation of motion for the forced


oscillator that


x ¼ � F0


!Zm


cos ð!t � �Þ


and the velocity


v ¼ F0


Zm


sin ð!t � �Þ


Problem 3.2
The displacement of a forced oscillator is zero at time t ¼ 0 and its rate of growth is governed by the


rate of decay of the transient term. If this term decays to e�k of its original value in a time t show


that, for small damping, the average rate of growth of the oscillations is given by x 0=t ¼ F0=2km!0


where x 0 is the maximum steady state displacement, F0 is the force amplitude and !2
0 ¼ s=m.
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Problem 3.3
The equation m€xx þ sx ¼ F0 sin!t describes the motion of an undamped simple harmonic oscillator


driven by a force of frequency !. Show, by solving the equation in vector form, that the steady state


solution is given by


x ¼ F 0 sin!t


mð!2
0 � !2Þ where !2


0 ¼ s


m


Sketch the behaviour of the amplitude of x versus ! and note that the change of sign as ! passes


through !0 defines a phase change of � rad in the displacement. Now show that the general solution


for the displacement is given by


x ¼ F0 sin!t


mð!2
0 � !2Þ þ A cos!0t þ B sin!0t


where A and B are constant.


Problem 3.4
In problem 3.3, if x ¼ _xx ¼ 0 at t ¼ 0 show that


x ¼ F0


m


1


ð!2
0 � !2Þ sin!t � !


!0


sin!0t


� �


and, by writing ! ¼ !0 þ�! where �!=! 0 � 1 and �!t � 1, show that near resonance,


x ¼ F0


2m!2
0


ðsin! 0t � !0t cos!0tÞ


Sketch this behaviour, noting that the second term increases with time, allowing the oscillations to


grow (resonance between free and forced oscillations). Note that the condition �!t � 1 focuses


attention on the transient.


Problem 3.5
What is the general expression for the acceleration _vv of a simple damped mechanical oscillator


driven by a force F0 cos!t? Derive an expression to give the frequency of maximum acceleration


and show that if r ¼ ffiffiffiffiffiffi
sm


p
, then the acceleration amplitude at the frequency of velocity resonance


equals the limit of the acceleration amplitude at high frequencies.


Problem 3.6
Prove that the exact amplitude at the displacement resonance of a driven mechanical oscillator may


be written x ¼ F0=!
0r where F0 is the driving force amplitude and


! 02 ¼ s


m
� r 2


4m2


Problem 3.7
In a forced mechanical oscillator show that the following are frequency independent (a) the


displacement amplitude at low frequencies (b) the velocity amplitude at velocity resonance and (c)


the acceleration amplitude at high frequencies, ð!! 1Þ.
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Problem 3.8
In Figure 3.9 show that for small r, the maximum value of curve (a) is � F0=2!0r at


!1 ¼ !0 � r=2m and its minimum value is � �F0=2!0r at !2 ¼ !0 þ r=2m.


Problem 3.9
The equation €xx þ !2


0x ¼ ð�eE 0=mÞ cos!t describes the motion of a bound undamped electric


charge �e of mass m under the influence of an alternating electric field E ¼ E0 cos!t. For an


electron number density n show that the induced polarizability per unit volume (the dynamic


susceptibility) of a medium



 e ¼ � n ex


"0E
¼ n e 2


" 0mð! 2
0 � !2Þ


(The permittivity of a medium is defined as " ¼ " 0ð1 þ 
Þ where " 0 is the permittivity of free space.


The relative permittivity " r ¼ "=" 0 is called the dielectric constant and is the square of the refractive


index when E is the electric field of an electromagnetic wave.)


Problem 3.10
Repeat Problem 3.9 for the case of a damped oscillatory electron, by taking the displacement x as the


component represented by curve (a) in Figure 3.9 to show that


" r ¼ 1 þ 
 ¼ 1 þ n e 2mð!2
0 � !2Þ


" 0½m 2ð!2
0 � !2Þ2 þ ! 2r 2�


In fact, Figure 3.9(a) plots " r ¼ "=" 0. Note that for


!� !0; " r � 1 þ n e2


" 0 m!2
0


and for


!� !0; " r � 1 � n e2


" 0 m!2


Problem 3.11
Show that the energy dissipated per cycle by the frictional force r _xx at an angular frequency ! is given


by �r!x 2
max.


Problem 3.12
Show that the bandwidth of the resonance absorption curve defines the phase angle range


tan� ¼ �1.


Problem 3.13
An alternating voltage, amplitude V 0 is applied across an LCR series circuit. Show that the voltage at


current resonance across either the inductance or the condenser is QV 0.
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Problem 3.14
Show that in a resonant LCR series circuit the maximum potential across the condenser occurs at a


frequency ! ¼ !0ð1 � 1=2Q 2
0Þ


1=2
where !2


0 ¼ ðLCÞ�1
and Q0 ¼ !0L=R.


Problem 3.15
In Problem 3.14 show that the maximum potential across the inductance occurs at a frequency


! ¼ !0ð1 � 1=2Q 2
0Þ


�1=2
.


Problem 3.16
Light of wavelength 0.6 mm (6000 Å) is emitted by an electron in an atom behaving as a lightly


damped simple harmonic oscillator with a Q-value of 5 � 107. Show from the resonance bandwidth


that the width of the spectral line from such an atom is 1:2 � 10�14 m.


Problem 3.17
If the Q-value of Problem 3.6 is high show that the width of the displacement resonance curve is


approximately
ffiffiffi
3


p
r=m where the width is measured between those frequencies where x ¼ xmax=2.


Problem 3.18
Show that, in Problem 3.10, the mean rate of energy absorption per unit volume; that is, the power


supplied is


P ¼ n e2E 2
0


2


!2r


m2ð!2
0 � !2Þ 2 þ !2r 2


Summary of Important Results


Mechanical Impedance Zm ¼ F=v (force per unit velocity)


Zm ¼ Zm ei� ¼ r þ ið!m � s=!Þ


where Z 2
m ¼ r 2 þ ð!m � s=!Þ2


sin� ¼ !m � s=!


Zm


; cos� ¼ r


Zm


; tan� ¼ !m � s=!


r


� is the phase angle between the force and velocity.


Forced Oscillator


Equation of motion m€xx þ r _xx þ sx ¼ F0 cos!t


(Vector form) m€xx þ r _xx þ sx ¼ F0 e i!t


Use x ¼ A ei!t to give steady state displacement


x ¼ �i
F0


!Zm


eið!t��Þ
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and velocity


_xx ¼ v ¼ F0


Zm


e ið!t��Þ


When F0 e i!t represents F0 cos!t


x ¼ F0


!Zm


sin ð!t � �Þ


v ¼ F0


Zm


cos ð!t � �Þ


Maximum velocity ¼ F0


r
at velocity resonant frequency !0 ¼ ðs=mÞ1=2


Maximum displacement ¼ F0


! 0r
where ! 0 ¼ ðs=m � r 2=4m2Þ1=2


at displacement


resonant frequency ! ¼ ðs=m � r 2=2m2Þ1=2


Power Absorbed by Oscillator from Driving Force


Oscillator adjusts amplitude and phase so that power supplied equals power dissipated.


Power absorbed ¼ 1
2
ðF 2


0=ZmÞ cos� (cos f is power factor)


Maximum power absorbed ¼ F 2
0


2r
at !0


Maxmium power


2
absorbed ¼ F 2


0


4r
at !1 ¼ !0 �


r


2m
and !2 ¼ !0 þ


r


2m


Quality factor Q ¼ !0m


r
¼ !0


!2 � !1


Q ¼ maximum displacement at displacement resonance


displacement as !! 0


¼ AðmaxÞ
F0=s


For equivalent expressions for electrical oscillators replace m by L, r by R, s by 1=C and F0


by V0 (voltage).
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Coupled Oscillations


The preceding chapters have shown in some detail how a single vibrating system will


behave. Oscillators, however, rarely exist in complete isolation; wave motion owes its


existence to neighbouring vibrating systems which are able to transmit their energy to each


other.


Such energy transfer takes place, in general, because two oscillators share a common


component, capacitance or stiffness, inductance or mass, or resistance. Resistance coupling


inevitably brings energy loss and a rapid decay in the vibration, but coupling by either of


the other two parameters consumes no power, and continuous energy transfer over many


oscillators is possible. This is the basis of wave motion.


We shall investigate first a mechanical example of stiffness coupling between two


pendulums. Two atoms set in a crystal lattice experience a mutual coupling force and


would be amenable to a similar treatment. Then we investigate an example of mass, or


inductive, coupling, and finally we consider the coupled motion of an extended array of


oscillators which leads us naturally into a discussion on wave motion.


Stiffness (or Capacitance) Coupled Oscillators


Figure 4.1 shows two identical pendulums, each having a mass m suspended on a light rigid


rod of length l. The masses are connected by a light spring of stiffness s whose natural


length equals the distance between the masses when neither is displaced from equilibrium.


The small oscillations we discuss are restricted to the plane of the paper.


If x and y are the respective displacements of the masses, then the equations of


motion are


m€xx ¼ �mg
x


l
� sðx � yÞ


and


m€yy ¼ �mg
y


l
þ sðx � yÞ


79


The Physics of Vibrations and Waves, 6th Edition H. J. Pain
# 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)







These represent the normal simple harmonic motion terms of each pendulum plus a coup-


ling term sðx � yÞ from the spring. We see that if x > y the spring is extended beyond its


normal length and will act against the acceleration of x but in favour of the acceleration of y.


Writing !2
0 ¼ g=l, where !0 is the natural vibration frequency of each pendulum, gives


€xx þ !2
0 x ¼ � s


m
ðx � yÞ ð4:1Þ


€yy þ !2
0 y ¼ � s


m
ðy � xÞ ð4:2Þ


Instead of solving these equations directly for x and y we are going to choose two new


coordinates


X ¼ x þ y


Y ¼ x � y


The importance of this approach will emerge as this chapter proceeds. Adding equations


(4.1) and (4.2) gives


€xx þ €yy þ !2
0ðx þ yÞ ¼ 0


that is


€XX þ !2
0X ¼ 0


and subtracting (4.2) from (4.1) gives


€YY þ ð!2
0 þ 2s=mÞY ¼ 0


The motion of the coupled system is thus described in terms of the two coordinates X and Y,


each of which has an equation of motion which is simple harmonic.


If Y ¼ 0, x ¼ y at all times, so that the motion is completely described by the equation


€XX þ !2
0 X ¼ 0


then the frequency of oscillation is the same as that of either pendulum in isolation and the


stiffness of the coupling has no effect. This is because both pendulums are always swinging


in phase (Figure 4.2a) and the light spring is always at its natural length.


y


s


l l


x


Figure 4.1 Two identical pendulums, each a light rigid rod of length l supporting a mass m and
coupled by a weightless spring of stiffness s and of natural length equal to the separation of the
masses at zero displacement
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If X ¼ 0, x ¼ �y at all times, so that the motion is completely described by


€YY þ ð!2
0 þ 2s=mÞY ¼ 0


The frequency of oscillation is greater because the pendulums are always out of phase


(Figure 4.2b) so that the spring is either extended or compressed and the coupling is


effective.


Normal Coordinates, Degrees of Freedom and Normal Modes
of Vibration


The significance of choosing X and Y to describe the motion is that these parameters give a


very simple illustration of normal coordinates.


� Normal coordinates are coordinates in which the equations of motion take the form of a


set of linear differential equations with constant coefficients in which each equation


contains only one dependent variable (our simple harmonic equations in X and Y ).


� A vibration involving only one dependent variable X (or Y ) is called a normal mode of


vibration and has its own normal frequency. In such a normal mode all components of


the system oscillate with the same normal frequency.


� The total energy of an undamped system may be expressed as a sum of the squares of


the normal coordinates multiplied by constant coefficients and a sum of the squares of


the first time derivatives of the coordinates multiplied by constant coefficients. The


energy of a coupled system when the X and Y modes are both vibrating would then be


expressed in terms of the squares of the velocities and displacements of X and Y.


� The importance of the normal modes of vibration is that they are entirely independent


of each other. The energy associated with a normal mode is never exchanged with


another mode; this is why we can add the energies of the separate modes to give the


total energy. If only one mode vibrates the second mode of our system will always be at


rest, acquiring no energy from the vibrating mode.


� Each independent way by which a system may acquire energy is called a degree of


freedom to which is assigned its own particular normal coordinate. The number of such


l l l l


(a) (b)


Figure 4.2 (a) The ‘in phase’ mode of vibration given by €XX þ !2
0 X ¼ 0, where X is the normal


coordinate X ¼ x þ y and ! 2
0 ¼ g=l. (b) ‘Out of phase’ mode of vibration given by €YY þ ð!2


0 þ 2s=mÞ
where Y is the normal coordinate Y ¼ x � y
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different ways in which the system can take up energy defines its number of degrees of


freedom and its number of normal coordinates. Each harmonic oscillator has two


degrees of freedom, it may take up both potential energy (normal coordinate X) and


kinetic energy (normal coordinate _XX). In our two normal modes the energies may be


written


EX ¼ a _XX 2 þ bX 2 ð4:3aÞ


and


EY ¼ c _YY 2 þ dY 2 ð4:3bÞ


where a, b, c and d are constant.


Our system of two coupled pendulums has, then, four degrees of freedom and four


normal coordinates.


Any configuration of our coupled system may be represented by the super-position of the


two normal modes


X ¼ x þ y ¼ X0 cos ð!1t þ �1Þ


and


Y ¼ x � y ¼ Y0 cos ð!2t þ �2Þ


where X0 and Y0 are the normal mode amplitudes, whilst !2
1 ¼ g=l and !2


2 ¼ ðg=l þ 2s=mÞ
are the normal mode frequencies. To simplify the discussion let us choose


X0 ¼ Y0 ¼ 2a


and put


�1 ¼ �2 ¼ 0


The pendulum displacements are then given by


x ¼ 1
2
ðX þ YÞ ¼ a cos!1t þ a cos!2t


and


y ¼ 1
2
ðX � YÞ ¼ a cos!1t � a cos!2t


with velocities


_xx ¼ �a!1 sin!1t � a!2 sin!2t


and


_yy ¼ �a!1 sin!1t þ a!2 sin!2t
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Now let us set the system in motion by displacing the right hand mass a distance x ¼ 2a


and releasing both masses from rest so that _xx ¼ _yy ¼ 0 at time t ¼ 0.


Figure 4.3 shows that our initial displacement x ¼ 2a, y ¼ 0 at t ¼ 0 may be seen as a


combination of the ‘in phase’ mode ðx ¼ y ¼ a so that x þ y ¼ X0 ¼ 2aÞ and of the ‘out of


phase’ mode ðx ¼ �y ¼ a so that Y0 ¼ 2aÞ. After release, the motion of the right hand


pendulum is given by


x ¼ a cos!1t þ a cos!2t


¼ 2a cos
ð!2 � !1Þt


2
cos


ð!1 þ !2Þt
2


and that of the left hand pendulum is given by


y ¼ a cos!1t � a cos!2t


¼ �2a sin
ð!1 � !2Þt


2
sin


ð!1 þ !2Þt
2


¼ 2a sin
ð!2 � !1Þt


2
sin


ð!1 þ !2Þt
2


If we plot the behaviour of the individual masses by showing how x and y change with time


(Figure 4.4), we see that after drawing the first mass aside a distance 2a and releasing it x


follows a consinusoidal behaviour at a frequency which is the average of the two normal


mode frequencies, but its amplitude varies cosinusoidally with a low frequency which is


half the difference between the normal mode frequencies. On the other hand, y, which


started at zero, vibrates sinusoidally with the average frequency but its amplitude builds up


to 2a and then decays sinusoidally at the low frequency of half the difference between the


normal mode frequencies. In short, the y displacement mass acquires all the energy of the x


displacement mass which is stationary when y is vibrating with amplitude 2a, but the


energy is then returned to the mass originally displaced. This complete energy exchange is


only possible when the masses are identical and the ratio ð!1 þ !2Þ=ð!2 � !1Þ is an


integer, otherwise neither will ever be quite stationary. The slow variation of amplitude at


half the normal mode frequency difference is the phenomenon of ‘beats’ which occurs


between two oscillations of nearly equal frequencies. We shall discuss this further in the


section on wave groups in Chapter 5.


y = 0 a2a a


YX


− a a


+


+


Figure 4.3 The displacement of one pendulum by an amount 2a is shown as the combination of the
two normal coordinates X þ Y
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The important point to recognize, however, is that although the individual pendulums


may exchange energy, there is no energy exchange between the normal modes. Figure 4.3


showed the initial configuration x ¼ 2a, y ¼ 0, decomposed into the X and Y modes. The


higher frequency of the Y mode ensures that after a number of oscillations the Y mode will


have gained half a vibration (a phase of � rad) on the X mode; this is shown in Figure 4.5.


The combination of the X and Y modes then gives y the value of 2a and x ¼ 0, and the


process is repeated. When Y gains another half vibration then x equals 2a again. The


pendulums may exchange energy; the normal modes do not.


To reinforce the importance of normal modes and their coordinates let us return to


equations (4.3a) and (4.3b). If we modify our normal coordinates to read


Xq ¼ m


2


� �1=2


ðx þ yÞ and Yq ¼ m


2


� �1=2


ðx � yÞ


t


t


y 
  d
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Figure 4.4 Behaviour with time of individual pendulums, showing complete energy exchange
between the pendulums as x decreases from 2a to zero whilst y grows from zero to 2a


x = 0 a2a a


YX


a − a


+


−


Figure 4.5 The faster vibration of the Y mode results in a phase gain of � rad over the X mode of
vibration, to give y ¼ 2a, which is shown here as a combination of the normal modes X � Y
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then we find that the kinetic energy in those equations becomes


Ek ¼ T ¼ a _XX 2 þ c _YY 2 ¼ 1


2
_XX 2


q þ
1


2
_YY 2


q ð4:4aÞ


and the potential energy


V ¼ bX 2 þ dY 2 ¼ 1


2


g


l


� �
X 2


q þ
1


2


g


l
þ 2s


m


� �
Y 2


q


¼ 1


2
!2


0 X 2
q þ


1


2
!2


s Y 2
q ;


ð4:4bÞ


where !2
0 ¼ g=l and !2


s ¼ g=l þ 2s=m.


Note that the coefficients of X 2
q and Y 2


q depend only on the mode frequencies and that the


properties of individual parts of the system are no longer explicit.


The total energy of the system is the sum of the energies of each separate excited mode


for there are no cross products XqYq in the energy expression of our example, i.e.,


E ¼ T þ V ¼ 1


2
_XX 2


q þ
1


2
!2


0 X 2
q


� �
þ 1


2
_YY 2


q þ 1


2
!2


s Y 2
q


� �


Atoms in polyatomic molecules behave as the masses of our pendulums; the normal


modes of two triatomic molecules CO2 and H2O are shown with their frequencies in


Figure 4.6. Normal modes and their vibrations will occur frequently throughout this book.
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O C O
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H H H H
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H H
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H2O


105°


ω1 = 11 × 1013 sec−1 ω2 = 11.27 × 1013 sec−1 ω3 = 4.78 × 1013 sec−1
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Figure 4.6 Normal modes of vibration for triatomic molecules CO 2 and H 2O
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The General Method for Finding Normal Mode Frequencies,
Matrices, Eigenvectors and Eigenvalues


We have just seen that when a coupled system oscillates in a single normal mode each


component of the system will vibrate with frequency of that mode. This allows us to adopt


a method which will always yield the values of the normal mode frequencies and the


relative amplitudes of the individual oscillators at each frequency.


Suppose that our system of coupled pendulums in the last section oscillates in only one


of its normal modes of frequency !.


Then, in the equations of motion


m€xx þ mgðx=lÞ þ sðx � yÞ ¼ 0


and
m€yy þ mgðy=lÞ � sðx � yÞ ¼ 0


If the pendulums start from test, we may assume the solutions


x ¼ A ei!t


y ¼ B ei!t


where A and B are the displacement amplitudes of x and y at the frequency !. Using these


solutions, the equations of motion become


½�m!2A þ ðmg=lÞA þ sðA � BÞ� ei!t ¼ 0


½�m!2B þ ðmg=lÞB � sðA � BÞ� ei!t ¼ 0
ð4:5Þ


The sum of these expressions gives


ðA þ BÞð�m!2 þ mg=lÞ ¼ 0


which is satisfied when !2 ¼ g=l, the first normal mode frequency. The difference between


the expressions gives


ðA � BÞð�m!2 þ mg=l þ 2sÞ ¼ 0


which is satisfied when !2 ¼ g=l þ 2s=m, the second normal mode frequency.


Inserting the value !2 ¼ g=l in the pair of equations gives A ¼ B (the ‘in phase’


condition), whilst !2 ¼ g=l þ 2s=m gives A ¼ �B (the antiphase conditon).


These are the results we found in the previous section.


We may, however, by dividing through by m ei!t, rewrite equation (4.5) in matrix form as


!2
0 þ !2


s �!2
s


�!2
s !2


0 þ !2
s


� �
A


B


� �
¼ !2 A


B


� �
ð4:6Þ


where


!2
0 ¼ g


l
and !2


s ¼ s


m


86 Coupled Oscillations







This is called an eigenvalue equation. The value of !2 for which non-zero solutions exist


are called the eigenvalues of the matrix. The column vector with components A and B is an


eigenvector of the matrix.


Equation (4.6) may be written in the alternative form


ð!2
0 þ !2


s � !2Þ �!2
s


�!2
s ð!2


0 þ !2
s � !2Þ


� �
A


B


� �
¼ 0 ð4:7Þ


and these equations have a non-zero solution if and only if the determinant of the matrix


vanishes; that is, if


ð!2
0 þ !2


s � !2Þ2 � !4
s ¼ 0


or


ð!2
0 þ !2


s � !2Þ ¼ 	!2
s


i.e.


!2
1 ¼ !2


0 or !2
2 ¼ !2


0 þ 2!2
s


as we expect.


The solution !2
1 ¼ !2


0 in equation (4.6) yields A ¼ B as previously and !2
2 ¼ !2


0 þ 2!2
s


yields A ¼ �B.


Because the system started from rest we have been able to assume solutions of the


simple form


x ¼ A ei!t


y ¼ B ei!t


When the pendulums have an initial velocity at t ¼ 0, the boundary conditions require


solutions of the form


x ¼ Aeið!tþ�xÞ


y ¼ Beið!tþ�yÞ


where each normal mode frequency ! has its own particular value of the phase constant �.


The number of adjustable constants then allows the solutions to satisfy the arbitrary values


of the initial displacements and velocities of both pendulums.


(Problems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11)


Mass or Inductance Coupling


In a later chapter we shall discuss the propagation of voltage and current waves along a


transmission line which may be considered as a series of coupled electrical oscillators


having identical values of inductance and of capacitance. For the moment we shall consider


the energy transfer between two electrical circuits which are inductively coupled.
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A mutual inductance (shared mass) exists between two electrical circuits when the


magnetic flux from the current flowing on one circuit threads the second circuit. Any


change of flux induces a voltage in both circuits.


A transformer depends upon mutual inductance for its operation. The power source is


connected to the transformer primary coil of np turns, over which is wound in the same


sense a secondary coil of ns turns. If unit current flowing in a single turn of the primary coil


produces a magnetic flux �, then the flux threading each primary turn (assuming no flux


leakage outside the coil) is np� and the total flux threading all np turns of the primary is


Lp ¼ n2
p�


where Lp is the self inductance of the primary coil. If unit current in a single turn of the


secondary coil produces a flux �, then the flux threading each secondary turn is ns� and the


total flux threading the secondary coil is


Ls ¼ n2
s�;


where Ls is the self inductance of the secondary coil.


If all the flux lines from unit current in the primary thread all the turns of the secondary,


then the total flux lines threading the secondary defines the mutual inductance


M ¼ nsðnp�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
LpLs


p
In practice, because of flux leakage outside the coils, M <


ffiffiffiffiffiffiffiffiffiffi
LpLs


p
and the ratio


Mffiffiffiffiffiffiffiffiffiffi
LpLs


p ¼ k; the coefficient of coupling:


If the primary current Ip varies with e i!t, a change of Ip gives an induced voltage


�LpdIp= dt ¼ �i!LIp in the primary and an induced voltage �M dIp=dt ¼ �i!MIp in the


secondary.


If we consider now the two resistance-free circuits of Figure 4.7, where L1 and L2 are


coupled by flux linkage and allowed to oscillate at some frequency ! (the voltage and


current frequency of both circuits), then the voltage equations are


i!L1I1 � i
1


!C1


I1 þ i!MI2 ¼ 0 ð4:8Þ


C2L 2L1C 1


M = Mutual Inductance


M


Figure 4.7 Inductively (mass) coupled LC circuits with mutual inductance M
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and


i!L2I2 � i
1


!C2


I2 þ i!MI1 ¼ 0 ð4:9Þ


where M is the mutual inductance.


Multiplying (4.8) by !=iL1 gives


!2I1 �
I1


L1C1


þ M


L1


!2I2 ¼ 0


and multiplying (4.9) by !=iL2 gives


!2I2 �
I2


L2C2


þ M


L2


!2I1 ¼ 0;


where the natural frequencies of the circuit !2
1 ¼ 1=L1C1 and !2


2 ¼ 1=L2C2 give


ð!2
1 � !2ÞI1 ¼ M


L1


!2I2 ð4:10Þ


and


ð!2
2 � !2ÞI2 ¼ M


L2


!2I1 ð4:11Þ


The product of equations (4.10) and (4.11) gives


ð!2
1 � !2Þð!2


2 � !2Þ ¼ M 2


L1L2


!4 ¼ k 2!4; ð4:12Þ


where k is the coefficient of coupling.


Solving for ! gives the frequencies at which energy exchange between the circuits


allows the circuits to resonate. If the circuits have equal natural frequencies !1 ¼ !2 ¼ !0,


say, then equation (4.12) becomes


ð!2
0 � !2Þ2 ¼ k 2!4


or


ð!2
0 � !2Þ ¼ 	 k!2


that is


! ¼ 	 !0ffiffiffiffiffiffiffiffiffiffiffi
1 	 k


p


The positive sign gives two frequencies


! 0 ¼ !0ffiffiffiffiffiffiffiffiffiffiffi
1 þ k


p and ! 00 ¼ !0ffiffiffiffiffiffiffiffiffiffiffi
1 � k


p


at which, if we plot the current amplitude versus frequency, two maxima appear (Figure 4.8).
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In loose coupling k and M are small, and ! 0 � ! 00 � !0, so that both systems behave


almost independently. In tight coupling the frequency difference ! 00 � ! 0 increases, the


peak values of current are displaced and the dip between the peaks is more pronounced. In


this simple analysis the effect of resistance has been ignored. In practice some resistance is


always present to limit the amplitude maximum.


(Problems 4.12, 4.13, 4.14, 4.15, 4.16)


Coupled Oscillations of a Loaded String


As a final example involving a large number of coupled oscillators we shall consider a light


string supporting n equal masses m spaced at equal distance a along its length. The string is


fixed at both ends; it has a length ðn þ 1Þa and a constant tension T exists at all points and


all times in the string.


Small simple harmonic oscillations of the masses are allowed in only one plane and the


problem is to find the frequencies of the normal modes and the displacement of each mass


in a particular normal mode.


This problem was first treated by Lagrange, its particular interest being the use it makes


of normal modes and the light it throws upon the wave motion and vibration of a


continuous string to which it approximates as the linear separation and the magnitude of the


masses are progressively reduced.


Figure 4.9 shows the displacement yr of the r th mass together with those of its two


neighbours. The equation of motion of this mass may be written by considering the


components of the tension directed towards the equilibrium position. The r th mass is


pulled downwards towards the equilibrium position by a force T sin 
1, due to the tension


C
ur


re
nt


 a
m


pl
itu


de


Coupling


(a) k large


            (b) k intermediate


(c) k small


ω0 ω


(a) (b) (c)


Figure 4.8 Variation of the current amplitude in each circuit near the resonant frequency. A small
resistance prevents the amplitude at resonance from reaching infinite values but this has been
ignored in the simple analysis. Flattening of the response curve maximum gives ‘frequency band pass’
coupling
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on its left and a force T sin 
2 due to the tension on its right where


sin 
1 ¼ yr � yr�1


a


and


sin 
2 ¼ yr � yrþ1


a


Hence the equation of motion is given by


m
d2yr


dt 2
¼ �T ðsin 
1 þ sin 
2Þ


¼ �T
yr � yr�1


a
þ yr � yrþ1


a


� �
so


d2yr


dt 2
¼ €yyr ¼


T


ma
ðyr�1 � 2yr þ yrþ1Þ ð4:13Þ


If, in a normal mode of oscillation of frequency !, the time variation of yr is simple


harmonic about the equilibrium axis, we may write the displacement of the r th mass in this


mode as


yr ¼ Ar ei!t


where Ar is the maximum displacement. Similarly yrþ1 ¼ Arþ1 e i!t and yr�1 ¼ Ar�1 e i!t.


Using these values of y in the equation of motion gives


�!2Ar ei!t ¼ T


ma
ðAr�1 � 2Ar þ Arþ1Þ ei!t


or


�Ar�1 þ 2 � ma! 2


T


� �
Ar � Arþ1 ¼ 0 ð4:14Þ


This is the fundamental equation.


m


m


m


a a


yr + 1yr − 1 yr


yr − yr  − 1 yr − yr + 1


1θ
2θ


Figure 4.9 Displacements of three masses on a loaded string under tension T giving equation of
motion m€yyr ¼ Tðy rþ1 � 2y rþ y r�1Þ=a


Coupled Oscillations of a Loaded String 91







The procedure now is to start with the first mass r ¼ 1 and move along the string, writing


out the set of similar equations as r assumes the values r ¼ 1; 2; 3; . . . ; n remembering that,


because the ends are fixed


y0 ¼ A0 ¼ 0 and ynþ1 ¼ Anþ1 ¼ 0


Thus, when r ¼ 1 the equation becomes


2 � ma!2


T


� �
A1 � A2 ¼ 0 ðA0 ¼ 0Þ


When r ¼ 2 we have


�A1 þ 2 � ma!2


T


� �
A2 � A3 ¼ 0


and when r ¼ n we have


�An�1 þ 2 � ma!2


T


� �
An ¼ 0 ðAnþ1 ¼ 0Þ


Thus, we have a set of n equations which, when solved, will yield n different values of !2,


each value of ! being the frequency of a normal mode, the number of normal modes being


equal to the number of masses.


The formal solution of this set of n equations involves the theory of matrices. However,


we may easily solve the simple cases for one or two masses on the string (n ¼ 1 or 2) and,


in additon, it is possible to show what the complete solution for n masses must be without


using sophisticated mathematics.


First, when n ¼ 1, one mass on a string of length 2a, we need only the equation for r ¼ 1


where the fixed ends of the string give A0 ¼ A2 ¼ 0.


Hence we have


2 � ma!2


T


� �
A1 ¼ 0


giving


!2 ¼ 2T


ma


a single allowed frequency of vibration (Figure 4.10a).


When n ¼ 2, string length 3a (Figure 4.10b) we need the equations for both r ¼ 1 and


r ¼ 2; that is


2 � ma!2


T


� �
A1 � A2 ¼ 0
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and


�A1 þ 2 � ma!2


T


� �
A2 ¼ 0 ðA0 ¼ A3 ¼ 0Þ


Eliminating A1 or A2 shows that these two equations may be solved (are consistent)


when


2 � ma!2


T


� �2


�1 ¼ 0


that is


2 � ma!2


T
� 1


� �
2 � ma!2


T
þ 1


� �
¼ 0


Thus, there are two normal mode frequencies


!2
1 ¼ T


ma
and !2


2 ¼ 3T


ma


aa
m


(a)


(b)


m m


m


m


A1


A1 A2
A1 = −A2


A2


ω2
2 3T


ma=


A1 = A2


ω1
2 T


ma=


ω2 2T
ma=


n = 1


n = 2


Figure 4.10 (a) Normal vibration of a single mass m on a string of length 2a at a frequency
!2 ¼ 2T=ma. (b) Normal vibrations of two masses on a string of length 3a showing the loose coupled
‘in phase’ mode of frequency ! 2


1 ¼ T=ma and the tighter coupled ‘out of phase’ mode of frequency
!2


2 ¼ 3T=ma. The number of normal modes of vibration equals the number of masses
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Using the values of !1 in the equations for r ¼ 1 and r ¼ 2 gives A1 ¼ A2 the slow ‘in


phase’ oscillation of Figure 4.10b, whereas !2 gives A1 ¼ �A2 the faster ‘anti-phase’


oscillation resulting from the increased coupling.


To find the general solution for any value of n let us rewrite the equation


�Ar�1 þ 2 � ma!2


T


� �
Ar � Arþ1 ¼ 0


in the form


Ar�1 þ Arþ1


Ar


¼ 2!2
0 � !2


!2
0


where !2
0 ¼ T


ma


We see that for any particular fixed value of the normal mode frequency !ð!j say) the


right hand side of this equation is constant, independent of r, so the equation holds for all


values of r. What values can we give to Ar which will satisfy this equation, meeting the


boundary conditions A0 ¼ Anþ1 ¼ 0 at the end of the string?


Let us assume that we may express the amplitude of the rth mass at the frequency !j as


Ar ¼ C eir



where C is a constant and 
 is some constant angle for a given value of !j. The left hand


side of the equation then becomes


Ar�1 þ Arþ1


Ar


¼ Cðeiðr�1Þ
 þ eiðrþ1Þ
Þ
C eir



¼ ðe�i
 þ ei
Þ


¼ 2 cos 



which is constant and independent of r.


The value of 
j (constant at !j) is easily found from the boundary conditions


A0 ¼ Anþ1 ¼ 0


which, using sin r
 from eir
 gives


A0 ¼ C sin r
 ¼ 0 ðautomatically at r ¼ 0Þ


and


Anþ1 ¼ C sin ðn þ 1Þ
 ¼ 0


when


ðn þ 1Þ 
 j ¼ j� for j ¼ 1; 2; . . . ; n
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Hence



 j ¼
j�


n þ 1


and


Ar ¼ C sin r
j ¼ C sin
rj�


n þ 1


which is the amplitude of the rth mass at the fixed normal mode frequency ! j.


To find the allowed values of ! j we write


Ar�1 þ Arþ1


Ar


¼
2!2


0 � !2
j


!2
0


¼ 2 cos 
 j ¼ 2 cos
j�


n þ 1


giving


!2
j ¼ 2!2


0 1 � cos
j�


n þ 1


� �
ð4:15Þ


where j may take the values j ¼ 1; 2; . . . ; n and !2
0 ¼ T=ma.


Note that there is a maximum frequency of oscillation !j ¼ 2!0. This is called the ‘cut


off’ frequency and such an upper frequency limit is characteristic of all oscillating systems


composed of similar elements (the masses) repeated periodically throughout the structure


of the system. We shall meet this in the next chapter as a feature of wave propagation in


crystals.


To summarize, we have found the normal modes of oscillation of n coupled masses on


the string to have frequencies given by


!2
j ¼ 2T


ma
1 � cos


j�


n þ 1


� �
ð j ¼ 1; 2; 3 . . . nÞ


At each frequency !j the r th mass has an amplitude


Ar ¼ C sin
rj�


n þ 1


where C is a constant.


(Problems 4.17, 4.18, 4.19, 4.20, 4.21, 4.22)


The Wave Equation


Finally, in this chapter, we show how the coupled vibrations in the periodic structure of our


loaded string become waves in a continuous medium.
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We found the equation of motion of the r th mass to be


d2yr


dt 2
¼ T


ma
ðyrþ1 � 2yr þ yr�1Þ ð4:13Þ


We know also that in a given normal mode all masses oscillate with the same mode


frequency !, so all yr’s have the same time dependence. However, as we see in Fig-


ure 4.10(b) where A1 and A2 are anti-phase, the transverse displacement yr also depends


upon the value of r ; that is, the position of the r th mass on the string. In other words, yr is a


function of two independent variables, the time t and the location of r on the string.


If we use the separation a � �x and let �x ! 0, the masses become closer and we can


consider positions along the string in terms of a continuous variable x and any transverse


displacement as yðx; tÞ, a function of both x and t.


The partial derivative notation @yðx; tÞ=@t expresses the variation with time of yðx; tÞ
while x is kept constant.


The partial derivative @yðx; tÞ=@x expresses the variation with x of yðx; tÞ while the time t


is kept constant. (Chapter 5 begins with an extended review of this process for students


unfamiliar with this notation.)


In the same way, the second derivative @ 2yðx; tÞ=@t 2 continues to keep x constant and


@ 2yðx; tÞ=@x2 keeps t constant.


For example, if


y ¼ eið!tþkxÞ


then


@y


@t
¼ i! eið!tþkxÞ ¼ i!y and


@ 2y


@t 2
¼ �!2y


while


@y


@x
¼ ik eið!tþkxÞ ¼ iky and


@ 2y


@x2
¼ �k 2y


If we now locate the transverse displacement yr at a position x ¼ xr along the string,


then the left hand side of equation (4.13) becomes


@ 2yr


@t 2
! @ 2y


@t 2
;


where y is evaluated at x ¼ xr and now, as a ¼ �x ! 0, we may write xr ¼ x; xrþ1 ¼
x þ �x and xr�1 ¼ x � �x with yrðtÞ ! yðx; tÞ; yrþ1ðtÞ ! yðx þ �x; tÞ and yr�1ðtÞ !
yðx � �x; tÞ.


Using a Taylor series expansion to express yðx 	 �x; tÞ in terms of partial derivates of y


with respect to x we have


yðx 	 �x; tÞ ¼ yðxÞ 	 �x
@y


@x
þ 1


2
ð	�xÞ2 @


2y


@x2
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and equation (4.13) becomes after substitution


@ 2y


@t 2
¼ T


m


yrþ1 � yr


a
� yr � yr�1


a


� �


¼ T


m


�x
@y


@x
þ 1


2
ð�xÞ2 @


2y


@x2


�x
�
�x
@y


@x
� 1


2
ð�xÞ2 @


2y


@x2


�x


0
BB@


1
CCA


so


@ 2y


@t 2
¼ T


m


ð�xÞ2


�x


@ 2y


@x2
¼ T


m
�x


@ 2y


@x2


If we now write m ¼  � x where  is the linear density (mass per unit length) of the


string, the masses must �!0 as �x�!0 to avoid infinite mass density. Thus, we have


@ 2y


@t 2
¼ T





@ 2y


@x2


This is the Wave Equation.


T= has the dimensions of the square of a velocity, the velocity with which the waves;


that is, the phase of oscillation, is propagated. The solution for y at any particular point


along the string is always that of a harmonic oscillation.


(Problem 4.23)


Problem 4.1
Show that the choice of new normal coordinates Xq and Y q expresses equations (4.3a) and (4.3b) as


equations (4.4a) and (4.4b).


Problem 4.2
Express the total energy of Problem 4.1 in terms of the pendulum displacements x and y as


E ¼ ðEkin þ EpotÞ x þ ðEkin þ EpotÞ y þ ðEpotÞ xy;


where the brackets give the energy of each pendulum expressed in its own coordinates and ðEpotÞ xy


is the coupling or interchange energy involving the product of these coordinates.


Problem 4.3
Figures 4.3 and 4.5 show how the pendulum configurations x ¼ 2a; y ¼ 0 and x ¼ 0; y ¼ 2a result


from the superposition of the normal modes X and Y. Using the same initial conditions
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ðx ¼ 2a; y ¼ 0; _xx ¼ _yy ¼ 0Þ draw similar sketches to show how X and Y superpose to produce


x ¼ �2a; y ¼ 0 and x ¼ 0; y ¼ �2a.


Problem 4.4
In the figure two masses m1 and m2 are coupled by a spring of stiffness s and natural length l. If x is


the extension of the spring show that equations of motion along the x axis are


m1€xx 1 ¼ sx


and


m 2€xx2 ¼ �sx


and combine these to show that the system oscillates with a frequency


!2 ¼ s


�
;


where


� ¼ m1m 2


m 1 þ m2


is called the reduced mass.


The figure now represents a diatomic molecule as a harmonic oscillator with an effective mass
equal to its reduced mass. If a sodium chloride molecule has a natural vibration frequency
¼ 1:14 � 10 13 Hz (in the infrared region of the electromagnetic spectrum) show that the interatomic
force constant s ¼ 120 N m�1 (this simple model gives a higher value for s than more refined
methods which account for other interactions within the salt crystal lattice)


Mass of Na atom¼ 23 a.m.u.


Mass of Cl atom¼ 35 a.m.u.


1 a.m.u.¼ 1.67�10�27 kg


m1
m2


x1
x2


l


Problem 4.5
The equal masses in the figure oscillate in the vertical direction. Show that the frequencies of the


normal modes of oscillation are given by


!2 ¼ ð3 	
ffiffiffi
5


p
Þ s


2 m


and that in the slower mode the ratio of the amplitude of the upper mass to that of the lower mass is
1
2
ð
ffiffiffi
5


p
� 1Þ whilst in the faster mode this ratio is � 1


2
ð
ffiffiffi
5


p
þ 1Þ.
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m


m


s


s


In the calculations it is not necessary to consider gravitational forces because they play no part in
the forces responsible for the oscillation.


Problem 4.6
In the coupled pendulums of Figure 4.3 let us write the modulated frequency !m ¼ ð!2 � !1Þ=2 and


the average frequency !a ¼ ð!2 þ !1Þ=2 and assume that the spring is so weak that it stores a


negligible amount of energy. Let the modulated amplitude


2a cos!mt or 2a sin!mt


be constant over one cycle at the average frequency !a to show that the energies of the masses may


be written


Ex ¼ 2ma 2! 2
a cos2 !mt


and


Ey ¼ 2ma 2!2
a sin 2 !mt


Show that the total energy E remains constant and that the energy difference at any time is


Ex � Ey ¼ E cos ð! 2 � !1Þt
Prove that


Ex ¼
E


2
½1 þ cos ð!2 � !1Þt�


and


Ey ¼
E


2
½1 � cos ð!2 � !1Þt�


to show that the constant total energy is completely exchanged between the two pendulums at the


beat frequency ð!2 � !1Þ.


Problem 4.7
When the masses of the coupled pendulums of Figure 4.1 are no longer equal the equations of


motion become


m 1€xx ¼ �m1ðg=lÞx � sðx � yÞ
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and


m 2€yy ¼ �m2ðg=lÞy þ sðx � yÞ


Show that we may choose the normal coordinates


X ¼ m 1x þ m2y


m 1 þ m2


with a normal mode frequency !2
1 ¼ g=l and Y ¼ x � y with a normal mode frequency


!2
2 ¼ g=l þ sð1=m1 þ 1=m 2Þ.
Note that X is the coordinate of the centre of mass of the system whilst the effective mass in the Y


mode is the reduced mass � of the system where 1=� ¼ 1=m 1 þ 1=m2.


Problem 4.8
Let the system of Problem 4.7 be set in motion with the initial conditions x ¼ A; y ¼ 0; _xx ¼ _yy ¼ 0 at


t ¼ 0. Show that the normal mode amplitudes are X0 ¼ ðm 1=MÞA and Y 0 ¼ A to yield


x ¼ A


M
ðm1 cos!1t þ m 2 cos!2tÞ


and


y ¼ A
m1


M
ðcos!1t � cos!2tÞ;


where M ¼ m 1 þ m2.
Express these displacements as


x ¼ 2 A cos!mt cos! at þ 2A


M
ðm1 � m 2Þ sin!mt sin!at


and


y ¼ 2 A
m 1


M
sin!mt sin!at;


where !m ¼ ð!2 � !1Þ=2 and !a ¼ ð!1 þ !2Þ=2.


Problem 4.9
Apply the weak coupling conditions of Problem 4.6 to the system of Problem 4.8 to show that the


energies


Ex ¼
E


M 2
½m 2


1 þ m2
2 þ 2m1m 2 cos ð!2 � !1Þt�


and


Ey ¼ E
2m1m 2


M 2


� �
½1 � cos ð!2 � !1Þt�


Note that Ex varies between a maximum of E (at t ¼ 0) and a minimum of ½ðm 1 � m2Þ=M� 2
E, whilst


Ey oscillates between a minimum of zero at t ¼ 0 and a maximum of 4ðm1m2=M2ÞE at the beat


frequency of ð!2 � !1Þ.
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Problem 4.10
In the figure below the right hand pendulum of the coupled system is driven by the horizontal force


F0 cos!t as shown. If a small damping constant r is included the equations of motion may be written


m€xx ¼ �mg


l
x � r _xx � sðx � yÞ þ F0 cos!t


and


m€yy ¼ �mg


l
y � r _yy þ sðx � yÞ


Show that the equations of motion for the normal coordinates X ¼ x þ y and Y ¼ x � y are those
for damped oscillators driven by a force F0 cos!t.


Solve these equations for X and Y and, by neglecting the effect of r, show that


x � F0


2m
cos!t


1


!2
1 � ! 2


þ 1


!2
2 � !2


� �


and


y � F0


2m
cos!t


1


!2
1 � ! 2


� 1


!2
2 � !2


� �


where


!2
1 ¼ g


l
and ! 2


2 ¼ g


l
þ 2s


m


Show that


y


x
� !2


2 � ! 2
1


!2
2 þ !2


1 � 2!2


and sketch the behaviour of the oscillator with frequency to show that outside the frequency range


!2 � !1 the motion of y is attenuated.


m


s


y


ll


m


x


F0 cos ωt


Problem 4.11
The diagram shows an oscillatory force Fo cos!t acting on a mass M which is part of a simple


harmonic system of stiffness k and is connected to a mass m by a spring of stiffness s. If all
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oscillations are along the x axis show that the condition for M to remain stationary is !2 ¼ s=m.


(This is a simple version of small mass loading in engineering to quench undesirable oscillations.)


mM


F0 cos ωt


Problem 4.12
The figure below shows two identical LC circuits coupled by a common capacitance C with the


directions of current flow indicated by arrows. The voltage equations are


V1 � V2 ¼ L
d I a


d t


and


V2 � V3 ¼ L
d I b


d t


whilst the currents are given by


dq1


d t
¼ �I a


dq2


d t
¼ I a � I b


and


dq3


d t
¼ I b


Solve the voltage equations for the normal coordinates ðI a þ I bÞ and ðI a � I bÞ to show that the
normal modes of oscillation are given by


I a ¼ I b at !2
1 ¼ 1


LC


and


I a ¼ �I b at !2
2 ¼ 3


LC


Note that when I a ¼ I b the coupling capacitance may be removed and q1 ¼ �q2. When I a ¼ �I b,


q 2 ¼ �2q1 ¼ �2q3.


C CC


q1


V1
Ia Ib


q3q2


V2


V3L L
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Problem 4.13
A generator of e.m.f. E is coupled to a load Z by means of an ideal transformer. From the diagram,


Kirchhoff’s Law gives


E ¼ �e1 ¼ i!LpI 1 � i!MI2


and


I 2Z2 ¼ e2 ¼ i!MI1 � i!LsI2:


Show that E=I1, the impedance of the whole system seen by the generator, is the sum of the primary


impedance and a ‘reflected impedance’ from the secondary circuit of !2M 2=Zs where


Z s ¼ Z 2 þ i!L s.


E


M


I2I1


Z2e1


Lp Ls


e2


Problem 4.14
Show, for the perfect transformer of Problem 4.13, that the impedance seen by the generator consists


of the primary impedance in parallel with an impedance ðnp=nsÞ 2
Z 2, where np and ns are the


number of primary and secondary transformer coil turns respectively.


Problem 4.15
If the generator delivers maximum power when its load equals its own internal impedance show how


an ideal transformer may be used as a device to match a load to a generator, e.g. a loudspeaker of a


few ohms impedance to an amplifier output of 10 3 � impedance.


Problem 4.16
The two circuits in the diagram are coupled by a variable mutual inductance M and Kirchhoff’s Law


gives


Z 1I1 þ Z MI2 ¼ E


and


ZMI1 þ Z 2I2 ¼ 0;


where


Z M ¼ þi!M


M is varied at a resonant frequency where the reactance X1 ¼ X2 ¼ 0 to give a maximum value


of I2. Show that the condition for this maximum is !M ¼
ffiffiffiffiffiffiffiffiffiffiffi
R1R2


p
and that this defines a


The Wave Equation 103







‘critical coefficient of coupling’ k ¼ ðQ1Q 2Þ�1=2
, where the Q’s are the quality factors of the


circuits.


E


M R2R1


L1


C1 C2


L2


Problem 4.17
Consider the case when the number of masses on the loaded string of this chapter is n ¼ 3. Use


equation (4.15) to show that the normal mode frequencies are given by


!2
1 ¼ ð2 �


ffiffiffi
2


p
Þ!2


0; !2
2 ¼ 2!2


0


and


!2
3 ¼ ð2 þ


ffiffiffi
2


p
Þ! 2


0


Repeat the problem using equation (4.14) (with !2
0 ¼ T=ma) in the matrix method of equation (4.7),


where the eigenvector components are Ar�1, Ar and Arþ1.


Problem 4.18
Show that the relative displacements of the masses in the modes of Problem 4.17 are 1 :


ffiffiffi
2


p
: 1,


1 : 0 : �1, and 1 : �
ffiffiffi
2


p
: 1. Show by sketching these relative displacements that tighter coupling


increases the mode frequency.


Problem 4.19


η2 η3η1


Mm m


The figure represents a triatomic molecule with a heavy atom mass M bound to equal atoms of


smaller mass m on either side. The binding is represented by springs of stiffness s and in equilibrium


the atom centres are equally spaced along a straight line. Simple harmonic vibrations are considered


only along this linear axis and are given by


� J ¼ � 0
J e i!t


where � J is the displacement from equilibrium of the j th atom.


Set up the equation of motion for each atom and use the matrix method of equation (4.7) to show
that the normal modes have frequencies


!2
1 ¼ 0; !2


2 ¼ s


m
and !2


3 ¼ sðM þ 2mÞ
mM


Describe the motion of the atoms in each normal mode.
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Problem 4.20
Taking the maximum value of


! 2
J ¼ 2T


ma
1 � cos


j�


n þ 1


� �


at j ¼ n as that produced by the strongest coupling, deduce the relative displacements of


neighbouring masses and confirm your deduction by inserting your values in consecutive difference


equations relating the displacements y rþ1; y r and yr�1. Why is your solution unlikely to satisfy the


displacements of those masses near the ends of the string?


Problem 4.21
Expand the value of


! 2
J ¼ 2T


ma
1 � cos


j�


n þ 1


� �


when j � n in powers of ð j=n þ 1Þ to show that in the limit of very large values of n, a low


frequency


! J ¼ j�


l


ffiffiffiffi
T





s
;


where  ¼ m=a and l ¼ ðn þ 1Þa.


Problem 4.22
An electrical transmission line consists of equal inductances L and capacitances C arranged as


shown. Using the equations


L d I r�1


d t
¼ Vr�1 � Vr ¼


qr�1 � qr


C


and


I r�1 � I r ¼
dqr


d t
;


show that an expression for I r may be derived which is equivalent to that for yr in the case of the


mass-loaded string. (This acts as a low pass electric filter and has a cut-off frequency as in the case of


the string. This cut-off frequency is a characteristic of wave propagation in periodic structures and


electromagnetic wave guides.)


C C CIrIr −1


qr −1


Vr −1


qr +1


Vr +1Vr 


qr 
LL


Problem 4.23
Show that


y ¼ e i!t e ikx


satisfies the wave equation


@ 2y


@t 2
¼ c2 @


2y


@x 2
; if ! ¼ ck
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Summary of Important Results


In coupled systems each normal coordinate defines a degree of freedom, each degree of


freedom defines a way in which a system may take up energy. The total energy of the


system is the sum of the energies in its normal modes of oscillation because these remain


separate and distinct, and energy is never exchanged between them.


A simple harmonic oscillator has two normal coordinates [velocity (or momentum) and


displacement] and therefore two degrees of freedom, the first connected with kinetic


energy, the second with potential energy.


n Equal Masses, Separation a, Coupled on a String under Constant Tension T


Equation of motion of the rth mass is


m€yyr ¼ ðT=aÞðyr�1 � 2yr þ yrþ1Þ


which for yr ¼ Ar ei!t gives


�Arþ1 þ
2 � ma!2


T


� �
Ar � Ar�1 ¼ 0


There are n normal modes with frequencies !J given by


!2
J ¼ 2T


ma
1 � cos


j�


n þ 1


� �


In a normal mode of frequency !J the rth mass has an amplitude


Ar ¼ C sin
rj�


n þ 1


where C is a constant.


Wave Equation


In the limit, as separation a ¼ �x ! 0 equation of motion of the rth mass on a loaded


string m€yyr ¼ ðT=aÞðyr�1 � 2yr þ yrþ1Þ becomes the wave equation


@ 2y


@t 2
¼ T





@ 2y


@x2
¼ c2 @


2y


@x2


where  is mass per unit length and c is the wave velocity.
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5


Transverse Wave Motion


Partial Differentiation


From this chapter onwards we shall often need to use the notation of partial differentiation.


When we are dealing with a function of only one variable, y ¼ f ðxÞ say, we write the


differential coefficient


dy


dx
¼ lim


�x!0


f ðx þ �xÞ � f ðxÞ
�x


but if we consider a function of two or more variables, the value of this function will vary


with a change in any or all of the variables. For instance, the value of the co-ordinate z on


the surface of a sphere whose equation is x2þy2þz2 ¼ a2, where a is the radius of the


sphere, will depend on x and y so that z is a function of x and y written z ¼ zðx; yÞ. The


differential change of z which follows from a change of x and y may be written


dz ¼ @z


@x


� �
y


dx þ @z


@y


� �
x


dy


where ð@z=@xÞ y means differentiating z with respect to x whilst y is kept constant, so that


@z


@x


� �
y


¼ lim
�x!0


zðx þ �x; yÞ � zðx; yÞ
�x


The total change dz is found by adding the separate increments due to the change of each


variable in turn whilst the others are kept constant. In Figure 5.1 we can see that keeping y


constant isolates a plane which cuts the spherical surface in a curved line, and the


incremental contribution to dz along this line is exactly as though z were a function of x


only. Now by keeping x constant we turn the plane through 90� and repeat the process with


y as a variable so that the total increment of dz is the sum of these two processes.


If only two independent variables are involved, the subscript showing which variable is


kept constant is omitted without ambiguity.
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In wave motion our functions will be those of variables of distance and time, and we


shall write @=@x and @ 2=@x2 for the first or second derivatives with respect to x, whilst the


time t remains constant. Again, @=@t and @ 2=@t 2 will denote first and second derivatives


with respect to time, implying that x is kept constant.


Waves


One of the simplest ways to demonstrate wave motion is to take the loose end of a long


rope which is fixed at the other end and to move the loose end quickly up and down. Crests


and troughs of the waves move down the rope, and if the rope were infinitely long such


waves would be called progressive waves– these are waves travelling in an unbounded


medium free from possible reflection (Figure 5.2).


Plane y = constant


0


y


plane x = constant


Small element of
spherical surface, radius a


x 
2+y 


2+z 
2 = a 


2


x


dx
dy


dz1


dz1


dz2


z (y) only


gradient (     )∂z
∂yx


z (x) only


gradient (     )∂z
∂xy


z


Figure 5.1 Small element of a Spherical Surface showing dz ¼ dz 1 þ dz 2 ¼ ð@z=@xÞ y dxþ
ð@z=@yÞ x dy where each gradient is calculated with one variable remaining constant


Progressive waves on infinitely long string


trough


crest


Figure 5.2 Progressive transverse waves moving along a string
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If the medium is limited in extent; for example, if the rope were reduced to a violin


string, fixed at both ends, the progressive waves travelling on the string would be reflected


at both ends; the vibration of the string would then be the combination of such waves


moving to and fro along the string and standing waves would be formed.


Waves on strings are transverse waves where the displacements or oscillations in the


medium are transverse to the direction of wave propagation. When the oscillations are parallel


to the direction of wave propagation the waves are longitudinal. Sound waves are longitudinal


waves; a gas can sustain only longitudinal waves because transverse waves require a shear


force to maintain them. Both transverse and longitudinal waves can travel in a solid.


In this book we are going to discuss plane waves only. When we see wave motion as a


series of crests and troughs we are in fact observing the vibrational motion of the individual


oscillators in the medium, and in particular all of those oscillators in a plane of the medium


which, at the instant of observation, have the same phase in their vibrations.


If we take a plane perpendicular to the direction of wave propagation and all oscillators


lying within that plane have a common phase, we shall observe with time how that plane of


common phase progresses through the medium. Over such a plane, all parameters


describing the wave motion remain constant. The crests and troughs are planes of


maximum amplitude of oscillation which are � rad out of phase; a crest is a plane of


maximum positive amplitude, while a trough is a plane of maximum negative amplitude. In


formulating such wave motion in mathematical terms we shall have to relate the phase


difference between any two planes to their physical separation in space. We have, in


principle, already done this in our discussion on oscillators.


Spherical waves are waves in which the surfaces of common phase are spheres and the


source of waves is a central point, e.g. an explosion; each spherical surface defines a set of


oscillators over which the radiating disturbance has imposed a common phase in vibration.


In practice, spherical waves become plane waves after travelling a very short distance. A


small section of a spherical surface is a very close approximation to a plane.


Velocities in Wave Motion


At the outset we must be very clear about one point. The individual oscillators which make


up the medium do not progress through the medium with the waves. Their motion is simple


harmonic, limited to oscillations, transverse or longitudinal, about their equilibrium


positions. It is their phase relationships we observe as waves, not their progressive motion


through the medium.


There are three velocities in wave motion which are quite distinct although they are


connected mathematically. They are


1. The particle velocity, which is the simple harmonic velocity of the oscillator about its


equilibrium position.


2. The wave or phase velocity, the velocity with which planes of equal phase, crests or


troughs, progress through the medium.


3. The group velocity. A number of waves of different frequencies, wavelengths and


velocities may be superposed to form a group. Waves rarely occur as single
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monochromatic components; a white light pulse consists of an infinitely fine spectrum


of frequencies and the motion of such a pulse would be described by its group velocity.


Such a group would, of course, ‘disperse’ with time because the wave velocity of each


component would be different in all media except free space. Only in free space would


it remain as white light. We shall discuss group velocity as a separate topic in a later


section of this chapter. Its importance is that it is the velocity with which the energy in


the wave group is transmitted. For a monochromatic wave the group velocity and the


wave velocity are identical. Here we shall concentrate on particle and wave velocities.


The Wave Equation


This equation will dominate the rest of this text and we shall derive it, first of all, by


considering the motion of transverse waves on a string.


We shall consider the vertical displacement y of a very short section of a uniform string.


This section will perform vertical simple harmonic motions; it is our simple oscillator. The


displacement y will, of course, vary with the time and also with x, the position along the


string at which we choose to observe the oscillation.


The wave equation therefore will relate the displacement y of a single oscillator to


distance x and time t. We shall consider oscillations only in the plane of the paper, so that


our transverse waves on the string are plane polarized.


The mass of the uniform string per unit length or its linear density is �, and a constant


tension T exists throughout the string although it is slightly extensible.


This requires us to consider such a short length and such small oscillations that we may


linearize our equations. The effect of gravity is neglected.


Thus in Figure 5.3 the forces acting on the curved element of length ds are T at an angle �
to the axis at one end of the element, and T at an angle �þ d� at the other end. The length


of the curved element is


ds ¼ 1 þ @y


@x


� �2
" #1=2


dx


displacement


y


x xdx


dS


x + dx


q


q + dq


String
element


T


T


Figure 5.3 Displaced element of string of length ds � dx with tension T acting at an angle � at x
and at �þ d� at x þ dx
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but within the limitations imposed @y=@x is so small that we ignore its square and take


ds ¼ dx. The mass of the element of string is therefore �ds ¼ �d _xx. Its equation of motion is


found from Newton’s Law, force equals mass times acceleration.


The perpendicular force on the element dx is T sin ð�þ d�Þ � T sin � in the positive y


direction, which equals the product of �dx (mass) and @ 2y=@t 2 (acceleration).


Since � is very small sin � � tan � ¼ @y=@x, so that the force is given by


T
@y


@x


� �
xþdx


� @y


@x


� �
x


� �


where the subscripts refer to the point at which the partial derivative is evaluated. The


difference between the two terms in the bracket defines the differential coefficient of the


partial derivative @y=@x times the space interval dx, so that the force is


T
@ 2y


@x2
dx


The equation of motion of the small element dx then becomes


T
@ 2y


@x2
dx ¼ � dx


@ 2y


@t 2


or


@ 2y


@x2
¼ �


T


@ 2y


@t 2


giving


@ 2y


@x2
¼ 1


c2


@ 2y


@t 2


where T=� has the dimensions of a velocity squared, so c in the preceding equation is a


velocity. THIS IS THE WAVE EQUATION.


It relates the acceleration of a simple harmonic oscillator in a medium to the second


derivative of its displacement with respect to its position, x, in the medium. The position of


the term c2 in the equation is always shown by a rapid dimensional analysis.


So far we have not explicitly stated which velocity c represents. We shall see that it is the


wave or phase velocity, the velocity with which planes of common phase are propagated. In


the string the velocity arises as the ratio of the tension to the inertial density of the string.


We shall see, whatever the waves, that the wave velocity can always be expressed as a


function of the elasticity or potential energy storing mechanism in the medium and the


inertia of the medium through which its kinetic or inductive energy is stored. For


longitudinal waves in a solid the elasticity is measured by Young’s modulus, in a gas by �P,


where � is the specific heat ratio and P is the gas pressure.
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Solution of the Wave Equation


The solution of the wave equation


@ 2y


@x2
¼ 1


c2


@ 2y


@t 2


will, of course, be a function of the variables x and t. We are going to show that any


function of the form y ¼ f1ðct � xÞ is a solution. Moreover, any function y ¼ f2ðct þ xÞ
will be a solution so that, generally, their superposition y ¼ f1ðct � xÞ þ f2ðct þ xÞ is the


complete solution.


If f 0
1 represents the differentiation of the function with respect to the bracket ðct � xÞ,


then using the chain rule which also applies to partial differentiation


@y


@x
¼ �f 0


1ðct � xÞ


and


@ 2y


@x2
¼ f 00


1 ðct � xÞ


also


@y


@t
¼ cf 0


1ðct � xÞ


and


@ 2y


@t 2
¼ c2f 00


1 ðct � xÞ


so that


@ 2y


@x2
¼ 1


c2


@ 2y


@t 2


for y ¼ f1ðct � xÞ. When y ¼ f2ðct þ xÞ a similar result holds.


(Problems 5.1, 5.2)


If y is the simple harmonic displacement of an oscillator at position x and time t we


would expect, from Chapter 1, to be able to express it in the form y ¼ a sin ð!t � 
Þ, and in


fact all of the waves we discuss in this book will be described by sine or cosine functions.


The bracket ðct � xÞ in the expression y ¼ f ðct � xÞ has the dimensions of a length and,


for the function to be a sine or cosine, its argument must have the dimensions of radians so


that ðct � xÞ must be multiplied by a factor 2�=�, where � is a length to be defined.
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We can now write


y ¼ a sin ð!t � 
Þ ¼ a sin
2�


�
ðct � xÞ


as a solution to the wave equation if 2�c=� ¼ ! ¼ 2��, where � is the oscillation


frequency and 
 ¼ 2�x=�.


This means that if a wave, moving to the right, passes over the oscillators in a medium


and a photograph is taken at time t ¼ 0, the locus of the oscillator displacements (Fig-


ure 5.4) will be given by the expression y ¼ a sin ð!t � 
Þ ¼ a sin 2�ðct � xÞ=�. If we now


observe the motion of the oscillator at the position x ¼ 0 it will be given by y ¼ a sin!t.


Any oscillator to its right at some position x will be set in motion at some later time by


the wave moving to the right; this motion will be given by


y ¼ a sin ð!t � 
Þ ¼ a sin
2�


�
ðct � xÞ


having a phase lag of 
 with respect to the oscillator at x ¼ 0. This phase lag 
 ¼ 2�x=�,


so that if x ¼ � the phase lag is 2� rad that is, equivalent to exactly one complete vibration


of an oscillator.


This defines � as the wavelength, the separation in space between any two oscillators


with a phase difference of 2� rad. The expression 2�c=� ¼ ! ¼ 2�� gives c ¼ ��, where


c, the wave or phase velocity, is the product of the frequency and the wavelength. Thus,


�=c ¼ 1=� ¼  , the period of oscillation, showing that the wave travels one wavelength in


this time. An observer at any point would be passed by � wavelengths per second, a


distance per unit time equal to the velocity c of the wave.


If the wave is moving to the left the sign of 
 is changed because the oscillation at x


begins before that at x ¼ 0. Thus, the bracket


ðct � xÞ denotes a wave moving to the right


λ


0
di


sp
la


ce
m


en
t y


a


x


Figure 5.4 Locus of oscillator displacements in a continuous medium as a wave passes over them
travelling in the positive x-direction. The wavelength � is defined as the distance between any two
oscillators having a phase difference of 2� rad
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and


ðct þ xÞ gives a wave moving in the direction of negative x:


There are several equivalent expressions for y ¼ f ðct � xÞ which we list here as sine


functions, although cosine functions are equally valid.


They are:


y ¼ a sin
2�


�
ðct � xÞ


y ¼ a sin 2� �t � x


�


� �
y ¼ a sin! t � x


c


� �
y ¼ a sin ð!t � kxÞ


where k ¼ 2�=� ¼ !=c is called the wave number; also y ¼ a eið!t�kxÞ, the exponential


representation of both sine and cosine.


Each of the expressions above is a solution to the wave equation giving the displacement


of an oscillator and its phase with respect to some reference oscillator. The changes of the


displacements of the oscillators and the propagation of their phases are what we observe as


wave motion.


The wave or phase velocity is, of course, @x=@t, the rate at which the disturbance moves


across the oscillators; the oscillator or particle velocity is the simple harmonic velocity


@y=@t.


Choosing any one of the expressions above for a right-going wave, e.g.


y ¼ a sin ð!t � kxÞ
we have


@y


@t
¼ !a cos ð!t � kxÞ


and
@y


@x
¼ �ka cos ð!t � kxÞ


so that


@y


@t
¼ �!


k


@y


@x
¼ �c


@y


@x
¼ � @x


@t


@y


@x


� �


The particle velocity @y=@t is therefore given as the product of the wave velocity


c ¼ @x


@t


and the gradient of the wave profile preceded by a negative sign for a right-going wave


y ¼ f ðct � xÞ
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In Figure 5.5 the arrows show the direction of the particle velocity at various points of


the right-going wave. It is evident that the particle velocity increases in the same direction


as the transverse force in the wave and we shall see in the next section that this force is


given by


�T@y=@x


where T is the tension in the string.


(Problem 5.3)


Characteristic Impedance of a String (the string as a forced
oscillator)


Any medium through which waves propagate will present an impedance to those waves. If


the medium is lossless, and possesses no resistive or dissipation mechanism, this


impedance will be determined by the two energy storing parameters, inertia and elasticity,


and it will be real. The presence of a loss mechanism will introduce a complex term into


the impedance.


A string presents such an impedance to progressive waves and this is defined, because of


the nature of the waves, as the transverse impedance


Z ¼ transverse force


transverse velocity
¼ F


v


y


x


x


∂y
∂t


∂y
∂x


= –c


Figure 5.5 The magnitude and direction of the particle velocity @y=@t ¼ �cð@y=@xÞ at any point x
is shown by an arrow in the right-going sine wave above
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The following analysis will emphasize the dual role of the string as a medium and as a


forced oscillator.


In Figure 5.6 we consider progressive waves on the string which are generated at one end


by an oscillating force, F0 e i!t, which is restricted to the direction transverse to the string


and operates only in the plane of the paper. The tension in the string has a constant value, T,


and at the end of the string the balance of forces shows that the applied force is equal and


opposite to T sin � at all time, so that


F0 e i!t ¼ �T sin � � �T tan � ¼ �T
@y


@x


� �


where � is small.


The displacement of the progressive waves may be represented exponentially by


y ¼ A eið!t�kxÞ


where the amplitude A may be complex because of its phase relation with F. At the end of


the string, where x ¼ 0,


F0 e i!t ¼ �T
@y


@x


� �
x¼0


¼ ikTA eið!t�k
0Þ


giving


A ¼ F0


ikT
¼ F0


i!


c


T


� �


and


y ¼ F0


i!


c


T


� �
eið!t�kxÞ


(since c ¼ !=kÞ:


F0eiwt = –T sin q


F0eiwt


T


T


q
q


x


Figure 5.6 The string as a forced oscillator with a vertical force F0 e i!t driving it at one end
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The transverse velocity


v ¼ _yy ¼ F0


c


T


� �
eið!t�kxÞ


where the velocity amplitude v ¼ F0=Z, gives a transverse impedance


Z ¼ T


c
¼ �c ðsince T ¼ �c2Þ


or Characteristic Impedance of the string.


Since the velocity c is determined by the inertia and the elasticity, the impedance is also


governed by these properties.


(We can see that the amplitude of displacement y ¼ F0=!Z, with the phase relationship


�i with respect to the force, is in complete accord with our discussion in Chapter 3.)


Reflection and Transmission of Waves on a String at a Boundary


We have seen that a string presents a characteristic impedance �c to waves travelling along


it, and we ask how the waves will respond to a sudden change of impedance; that is, of the


value �c. We shall ask this question of all the waves we discuss, acoustic waves, voltage


and current waves and electromagnetic waves, and we shall find a remarkably consistent


pattern in their behaviour.


We suppose that a string consists of two sections smoothly joined at a point x ¼ 0 with a


constant tension T along the whole string. The two sections have different linear densities


�1 and �2, and therefore different wave velocities T=�1 ¼ c2
1 and T=�2 ¼ c2


2. The specific


impedances are �1c1 and �2c2, respectively.


An incident wave travelling along the string meets the discontinuity in impedance at the


position x ¼ 0 in Figure 5.7. At this position, x ¼ 0, a part of the incident wave will be


reflected and part of it will be transmitted into the region of impedance �2c2.


We shall denote the impedance �1c1 by Z1 and the impedance �2c2 by Z2. We write the


displacement of the incident wave as yi ¼ A1 e ið!t�kxÞ, a wave of real (not complex)


x = 0


P2C2


P1C1


TIncident wave


Transmitted wave


Reflected wave


T


Figure 5.7 Waves on a string of impedance �1c 1 reflected and transmitted at the boundary x ¼ 0
where the string changes to impedance � 2c 2
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amplitude A1 travelling in the positive x-direction with velocity c1. The displacement of


the reflected wave is yr ¼ B1 e ið!tþk 1xÞ, of amplitude B1 and travelling in the negative


x-direction with velocity c1.


The transmitted wave displacement is given by yt ¼ A2 e ið!t�k 2xÞ, of amplitude A2 and


travelling in the positive x-direction with velocity c2.


We wish to find the reflection and transmission amplitude coefficients; that is, the relative


values of B1 and A2 with respect to A1. We find these via two boundary conditions which


must be satisfied at the impedance discontinuity at x ¼ 0.


The boundary conditions which apply at x ¼ 0 are:


1. A geometrical condition that the displacement is the same immediately to the left and


right of x ¼ 0 for all time, so that there is no discontinuity of displacement.


2. A dynamical condition that there is a continuity of the transverse force Tð@y=@xÞ at


x ¼ 0, and therefore a continuous slope. This must hold, otherwise a finite difference in


the force acts on an infinitesimally small mass of the string giving an infinite


acceleration; this is not permitted.


Condition (1) at x ¼ 0 gives


yi þ yr ¼ yt


or


A
ið!t�k 1xÞ
1 þ B1 e ið!tþk 1xÞ ¼ A2 e ið!t�k 2xÞ


At x ¼ 0 we may cancel the exponential terms giving


A1 þ B1 ¼ A2 ð5:1Þ


Condition (2) gives


T
@


@x
ðyi þ yrÞ ¼ T


@


@x
yt


at x ¼ 0 for all t, so that


�k1TA1 þ k1TB1 ¼ �k2TA2


or


�! T


c1


A1 þ !
T


c1


B1 ¼ �! T


c2


A2


after cancelling exponentials at x ¼ 0. But T=c1 ¼ �1c1 ¼ Z1 and T=c2 ¼ �2c2 ¼ Z2,


so that


Z1ðA1 � B1Þ ¼ Z2A2 ð5:2Þ
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Equations (5.1) and (5.2) give the


Reflection coefficient of amplitude;
B1


A1


¼ Z1 � Z2


Z1 þ Z2


and the


Transmission coefficient of amplitude;
A2


A1


¼ 2Z1


Z1 þ Z2


We see immediately that these coefficients are independent of ! and hold for waves of all


frequencies; they are real and therefore free from phase changes other than that of � rad


which will change the sign of a term. Moreover, these ratios depend entirely upon the ratios


of the impedances. (See summary on p. 546). If Z2 ¼ 1, this is equivalent to x ¼ 0 being a


fixed end to the string because no transmitted wave exists. This gives B1=A1 ¼ �1, so that


the incident wave is completely reflected (as we expect) with a phase change of � (phase


reversal)—conditions we shall find to be necessary for standing waves to exist. A group of


waves having many component frequencies will retain its shape upon reflection at Z2 ¼ 1,


but will suffer reversal (Figure 5.8). If Z2 ¼ 0, so that x ¼ 0 is a free end of the string, then


B1=A1 ¼ 1 and A2=A1 ¼ 2. This explains the ‘flick’ at the end of a whip or free ended


string when a wave reaches it.


Reflection of pulse having many
                   frequency components


Incident
     Pulse


Reflected
     Pulse


Infinite
Impedance


    pC = ∞


B


A C


C′


Figure 5.8 A pulse of arbitrary shape is reflected at an infinite impedance with a phase change of
� rad, so that the reflected pulse is the inverted and reversed shape of the initial waveform. The pulse
at reflection is divided in the figure into three sections A, B, and C. At the moment of observation
section C has already been reflected and suffered inversion and reversal to become C 0. The actual
shape of the pulse observed at this instant is A being Aþ B� C 0 where B¼ C 0. The displacement at
the point of reflection must be zero.
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(Problems 5.4, 5.5, 5.6)


Reflection and Transmission of Energy


Our interest in waves, however, is chiefly concerned with their function of transferring


energy throughout a medium, and we shall now consider what happens to the energy in a


wave when it meets a boundary between two media of different impedance values.


If we consider each unit length, mass �, of the string as a simple harmonic oscillator of


maximum amplitude A, we know that its total energy will be E ¼ 1
2
�!2A2, where ! is the


wave frequency.


The wave is travelling at a velocity c so that as each unit length of string takes up its


oscillation with the passage of the wave the rate at which energy is being carried along the


string is


(energy� velocity) ¼ 1
2
�!2A2c


Thus, the rate of energy arriving at the boundary x ¼ 0 is the energy arriving with the


incident wave; that is


1
2
�1c1!


2A2
1 ¼ 1


2
Z1!


2A2
1


The rate at which energy leaves the boundary, via the reflected and transmitted waves, is


1
2
�1c1!


2B2
1 þ 1


2
�2c2!


2A2
2 ¼ 1


2
Z1!


2B2
1 þ 1


2
Z2!


2A2
2


which, from the ratio B1=A1 and A2=A1,


¼ 1
2
!2A2


1


Z1ðZ1 � Z2Þ2 þ 4Z 2
1 Z2


ðZ1 þ Z2Þ2
¼ 1


2
Z1!


2A2
1


Thus, energy is conserved, and all energy arriving at the boundary in the incident


wave leaves the boundary in the reflected and transmitted waves.


The Reflected and Transmitted Intensity Coefficients


These are given by


Reflected Energy


Incident Energy
¼ Z1B2


1


Z1A2
1


¼ B1


A1


� �2


¼ Z1 � Z2


Z1 þ Z2


� �2


Transmitted Energy


Incident Energy
¼ Z2A2


2


Z1A2
1


¼ 4Z1Z2


ðZ1 þ Z2Þ2


We see that if Z1 ¼ Z2 no energy is reflected and the impedances are said to be matched.
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(Problems 5.7, 5.8)


The Matching of Impedances


Impedance matching represents a very important practical problem in the transfer of


energy. Long distance cables carrying energy must be accurately matched at all joints to


avoid wastage from energy reflection. The power transfer from any generator is a


maximum when the load matches the generator impedance. A loudspeaker is matched to


the impedance of the power output of an amplifier by choosing the correct turns ratio on the


coupling transformer. This last example, the insertion of a coupling element between two


mismatched impedances, is of fundamental importance with applications in many branches


of engineering physics and optics. We shall illustrate it using waves on a string, but the


results will be valid for all wave systems.


We have seen that when a smooth joint exists between two strings of different


impedances, energy will be reflected at the boundary. We are now going to see that the


insertion of a particular length of another string between these two mismatched strings will


allow us to eliminate energy reflection and match the impedances.


In Figure 5.9 we require to match the impedances Z1 ¼ �1c1 and Z3 ¼ �3c3 by the


smooth insertion of a string of length l and impedance Z2 ¼ �2c2. Our problem is to find


the values of l and Z2.


yi = A1 e
i(wt 


 
– k1x )


yr = B1 e
i(wt


  
+ k1x )


yi = A2 e
i(wt


  
– k2x )


yi = A3 e
i(wt


  
– k3 (x – L))


yr = B2 e
i(wt


  
+ k2x )


l


x = 0


Z 2 = P2C2 Z 3 = P3C3Z 1 = P1C1


x = l


Figure 5.9 The impedances Z1 and Z3 of two strings are matched by the insertion of a length l of a
string of impedance Z 2. The incident and reflected waves are shown for the boundaries x ¼ 0 and
x ¼ l. The impedances are matched when Z 2


2 ¼ Z1Z 3 and l ¼ �=4 in Z2, results which are true for
waves in all media
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The incident, reflected and transmitted displacements at the junctions x ¼ 0 and x ¼ l are


shown in Figure 5.9 and we seek to make the ratio


Transmitted energy


Incident energy
¼ Z3A2


3


Z1A2
1


equal to unity.


The boundary conditions are that y and Tð@y=@xÞ are continuous across the junctions


x ¼ 0 and x ¼ l.


Between Z1 and Z2 the continuity of y gives


A1 e ið!t�k 1xÞ þ B1 e ið!tþk 1xÞ ¼ A2 e ið!t�k 2xÞ þ B2 e ið!tþk 2xÞ


or


A1 þ B1 ¼ A2 þ B2 ðat x ¼ 0Þ ð5:3Þ


Similarly the continuity of Tð@y=@xÞ at x ¼ 0 gives


Tð�ik1A1 þ ik1B1Þ ¼ Tð�ik2A2 þ ik2B2Þ


Dividing this equation by ! and remembering that Tðk=!Þ ¼ T=c ¼ �c ¼ Z we have


Z1ðA1 � B1Þ ¼ Z2ðA2 � B2Þ ð5:4Þ


Similarly at x ¼ l, the continuity of y gives


A2 e�ik 2l þ B2 e ik 2l ¼ A3 ð5:5Þ


and the continuity of Tð@y=@xÞ gives


Z2ðA2 e�ik 2l � B2 e ik 2lÞ ¼ Z3A3 ð5:6Þ


From the four boundary equations (5.3), (5.4), (5.5) and (5.6) we require the ratio A3=A1.


We use equations (5.3) and (5.4) to eliminate B1 and obtain A1 in terms of A2 and B2. We


then use equations (5.5) and (5.6) to obtain both A2 and B2 in terms of A3. Equations (5.3)


and (5.4) give


Z1ðA1 � A2 � B2 þ A1Þ ¼ Z2ðA2 � B2Þ


or


A1 ¼ A2ðr12 þ 1Þ þ B2ðr12 � 1Þ
2r12


ð5:7Þ


where


r12 ¼ Z1


Z2


122 Transverse Wave Motion







Equations (5.5) and (5.6) give


A2 ¼ r23 þ 1


2r23


A3 e ik 2l ð5:8Þ


and


B2 ¼ r23 � 1


2r23


A3 e�ik 2l


where


r23 ¼ Z2


Z3


Equations (5.7) and (5.8) give


A1 ¼ A3


4r12r23


½ðr12 þ 1Þðr23 þ 1Þ eik 2l þ ðr12 � 1Þðr23 � 1Þ e�ik 2l�


¼ A3


4r13


½ðr13 þ 1Þðeik 2l þ e�ik 2lÞ þ ðr12 þ r23Þðeik 2l � e�ik 2lÞ�


¼ A3


2r13


½ðr13 þ 1Þ cos k2l þ iðr12 þ r23Þ sin k2l �


where


r12r23 ¼ Z1


Z2


Z2


Z3


¼ Z1


Z3


¼ r13


Hence


A3


A1


� �2


¼ 4r 2
13


ðr13 þ 1Þ2
cos2 k2l þ ðr12 þ r23Þ2


sin2 k2l


or


transmitted energy


incident energy
¼ Z3


Z1


A2
3


A2
1


¼ 1


r13


A2
3


A2
1


¼ 4r13


ðr13 þ 1Þ2
cos2 k2l þ ðr12 þ r23Þ2


sin2 k2l


If we choose l ¼ �2=4; cos k2l ¼ 0 and sin k2l ¼ 1 we have


Z3


Z1


A2
3


A2
1


¼ 4r13


ðr12 þ r23Þ2
¼ 1


when


r12 ¼ r23
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that is, when


Z1


Z2


¼ Z2


Z3


or Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Z1Z3


p


We see, therefore, that if the impedance of the coupling medium is the harmonic mean of


the two impedances to be matched and the thickness of the coupling medium is


�2


4
where �2 ¼ 2�


k2


all the energy at frequency ! will be transmitted with zero reflection.


The thickness of the dielectric coating of optical lenses which eliminates reflections


as light passes from air into glass is one quarter of a wavelength. The ‘bloomed’ appearance


arises because exact matching occurs at only one frequency. Transmission lines are matched


to loads by inserting quarter wavelength stubs of lines with the appropriate impedance.


(Problems 5.9, 5.10)


Standing Waves on a String of Fixed Length


We have already seen that a progressive wave is completely reflected at an infinite


impedance with a � phase change in amplitude. A string of fixed length l with both ends


rigidly clamped presents an infinite impedance at each end; we now investigate the


behaviour of waves on such a string. Let us consider the simplest case of a monochromatic


wave of one frequency ! with an amplitude a travelling in the positive x-direction and an


amplitude b travelling in the negative x-direction. The displacement on the string at any


point would then be given by


y ¼ a eið!t�kxÞ þ b eið!tþkxÞ


with the boundary condition that y ¼ 0 at x ¼ 0 and x ¼ l at all times.


The condition y ¼ 0 at x ¼ 0 gives 0 ¼ ða þ bÞ e i!t for all t, so that a ¼ �b. This


expresses physically the fact that a wave in either direction meeting the infinite impedance


at either end is completely reflected with a � phase change in amplitude. This is a general


result for all wave shapes and frequencies.


Thus


y ¼ a ei!tðe�ikx � eikxÞ ¼ ð�2iÞa ei!t sin kx ð5:9Þ


an expression for y which satisfies the standing wave time independent form of the wave


equation


@ 2y=@x2 þ k 2y ¼ 0


because ð1=c2Þð@ 2y=@t 2Þ ¼ ð�!2=c2Þy ¼ �k 2y: The condition that y ¼ 0 at x ¼ l for all t


requires


sin kl ¼ sin
!l


c
¼ 0 or


!l


c
¼ n�
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limiting the values of allowed frequencies to


!n ¼ n�c


l


or


�n ¼ nc


2l
¼ c


�n


that is


l ¼ n�n


2


giving


sin
!nx


c
¼ sin


n�x


l


These frequencies are the normal frequencies or modes of vibration we first met in


Chapter 4. They are often called eigenfrequencies, particularly in wave mechanics.


Such allowed frequencies define the length of the string as an exact number of half


wavelengths, and Figure 5.10 shows the string displacement for the first four harmonics


ðn ¼ 1; 2; 3; 4Þ: The value for n ¼ 1 is called the fundamental.


As with the loaded string of Chapter 4, all normal modes may be present at the same


time and the general displacement is the superposition of the displacements at each


frequency. This is a more complicated problem which we discuss in Chapter 10 (Fourier


Methods).


For the moment we see that for each single harmonic n > 1 there will be a number of


positions along the string which are always at rest. These points occur where


sin
!nx


c
¼ sin


n�x


l
¼ 0


or


n�x


l
¼ r� ðr ¼ 0; 1; 2; 3; . . . nÞ


n = 4


n = 3


n = 2


n = 1


Figure 5.10 The first four harmonics, n ¼ 1; 2; 3; 4 of the standing waves allowed between the two
fixed ends of a string
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The values r¼0 and r ¼ n give x ¼ 0 and x ¼ l, the ends of the string, but between the ends


there are n � 1 positions equally spaced along the string in the nth harmonic where the


displacement is always zero. These positions are called nodes or nodal points, being the


positions of zero motion in a system of standing waves. Standing waves arise when a


single mode is excited and the incident and reflected waves are superposed. If the amplitudes


of these progressive waves are equal and opposite (resulting from complete reflection),


nodal points will exist. Often however, the reflection is not quite complete and the waves in


the opposite direction do not cancel each other to give complete nodal points. In this case


we speak of a standing wave ratio which we shall discuss in the next section but one.


Whenever nodal points exist, however, we know that the waves travelling in opposite


directions are exactly equal in all respects so that the energy carried in one direction is


exactly equal to that carried in the other. This means that the total energy flux; that is, the


energy carried across unit area per second in a standing wave system, is zero.


Returning to equation (5.9), we see that the complete expression for the displacement of


the nth harmonic is given by


yn ¼ 2að�iÞðcos!nt þ i sin!ntÞ sin
!nx


c


We can express this in the form


yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx


c
ð5:10Þ


where the amplitude of the nth mode is given by ðA2
n þ B2


nÞ
1=2 ¼ 2a:


(Problem 5.11)


Energy of a Vibrating String


A vibrating string possesses both kinetic and potential energy. The kinetic energy of an


element of length dx and linear density � is given by 1
2
� dx _yy2; the total kinetic energy is the


integral of this along the length of the string.


Thus


Ekin ¼ 1
2


ð 1


0


� _yy2 dx


The potential energy is the work done by the tension T in extending an element dx to a new


length ds when the string is vibrating.


Thus


Epot ¼
ð


Tðds � dxÞ ¼
ð


T 1 þ @y


@x


� �2
" #1=2


�1


8<
:


9=
; dx


¼ 1


2
T


ð
@y


@x


� �2


dx


if we neglect higher powers of @y=@x.
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Now the change in the length of the element dx is 1
2
ð@y=@xÞ2


dx, and if the string is


elastic the change in tension is proportional to the change in length so that, provided


ð@y=@xÞ in the wave is of the first order of small quantities, the change in tension is of the


second order and T may be considered constant.


Energy in Each Normal Mode of a Vibrating String


The total displacement y in the string is the superposition of the displacements yn of the


individual harmonics and we can find the energy in each harmonic by replacing yn for y in


the results of the last section. Thus, the kinetic energy in the nth harmonic is


EnðkineticÞ ¼ 1
2


ð l


0


� _yy2
n dx


and the potential energy is


EnðpotentialÞ ¼ 1
2


T


ð l


0


@yn


@x


� �2


dx


Since we have already shown for standing waves that


yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx


c


then


_yyn ¼ ð�An!n sin!nt þ Bn!n cos!ntÞ sin
!nx


c


and


@yn


@x
¼ !n


c
ðAn cos!nt þ Bn sin!ntÞ cos


!nx


c


Thus


EnðkineticÞ ¼ 1
2
�!2


n½�An sin!nt þ Bn cos!nt�2


ð l


0


sin2 !nx


c
dx


and


EnðpotentialÞ ¼ 1
2


T
!2


n


c2
½An cos!nt þ Bn sin!nt�2


ð l


0


cos2 !nx


c
dx


Remembering that T ¼ �c2 we have


Enðkinetic þ potentialÞ ¼ 1
4
�l!2


nðA2
n þ B2


nÞ
¼ 1


4
m!2


nðA2
n þ B2


nÞ


where m is the mass of the string and ðA2
n þ B2


nÞ is the square of the maximum


displacement (amplitude) of the mode. To find the exact value of the total energy En of the
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mode we would need to know the precise value of An and Bn and we shall evaluate these in


Chapter 10 on Fourier Methods. The total energy of the vibrating string is, of course, the


sum of all the En’s of the normal modes.


(Problem 5.12)


Standing Wave Ratio


When a wave is completely reflected the superposition of the incident and reflected


amplitudes will give nodal points (zero amplitude) where the incident and reflected


amplitudes cancel each other, and points of maximum displacement equal to twice the


incident amplitude where they reinforce.


If a progressive wave system is partially reflected from a boundary let the amplitude


reflection coefficient B1=A1 of the earlier section be written as r, where r < 1.


The maximum amplitude at reinforcement is then A1 þ B1; the minimum amplitude is


given by A1 � B1. In this case the ratio of maximum to minimum amplitudes in the


standing wave system is called the


Standing Wave Ratio ¼ A1 þ B1


A1 � B1


¼ 1 þ r


1 � r


where r ¼ B1=A1.


Measuring the values of the maximum and minimum amplitudes gives the value of the


reflection coefficient for


r ¼ B1=A1 ¼ SWR � 1


SWR þ 1


where SWR refers to the Standing Wave Ratio.


(Problem 5.13)


Wave Groups and Group Velocity


Our discussion so far has been limited to monochromatic waves—waves of a single


frequency and wavelength. It is much more common for waves to occur as a mixture of


a number or group of component frequencies; white light, for instance, is composed of


a continuous visible wavelength spectrum extending from about 3000 Å in the blue to


7000 Å in the red. Examining the behaviour of such a group leads to the third kind of


velocity mentioned at the beginning of this chapter; that is, the group velocity.


Superposition of Two Waves of Almost Equal Frequencies


We begin by considering a group which consists of two components of equal amplitude a


but frequencies !1 and !2 which differ by a small amount.


Their separate displacements are given by


y1 ¼ a cos ð!1t � k1xÞ
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and


y2 ¼ a cos ð!2t � k2xÞ


Superposition of amplitude and phase gives


y¼y1þ y2 ¼ 2a cos
ð!1 � !2Þt


2
� ðk1 � k2Þx


2


� �
cos


ð!1 þ !2Þt
2


� ðk1 þ k2Þx
2


� �


a wave system with a frequency ð!1 þ !2Þ=2 which is very close to the frequency of either


component but with a maximum amplitude of 2a, modulated in space and time by a very


slowly varying envelope of frequency ð!1 � !2Þ=2 and wave number ðk1 � k2Þ=2.


This system is shown in Figure 5.11 and shows, of course a behaviour similar to that of


the equivalent coupled oscillators in Chapter 4. The velocity of the new wave is


ð!1�!2Þ=ðk1�k2Þ which, if the phase velocities !1=k1 ¼ !2=k2 ¼ c, gives


!1 � !2


k1 � k2


¼ c
ðk1 � k2Þ
k1 � k2


¼ c


so that the component frequencies and their superposition, or group will travel with the


same velocity, the profile of their combination in Figure 5.11 remaining constant.


If the waves are sound waves the intensity is a maximum whenever the amplitude is a


maximum of 2a; this occurs twice for every period of the modulating frequency; that is, at


a frequency �1 � �2.


Oscillation of


frequency ω1 + ω2


2


Envelope of


frequency ω1 – ω2


2


2a


Figure 5.11 The superposition of two waves of slightly different frequency !1 and !2 forms a
group. The faster oscillation occurs at the average frequency of the two components ð!1 þ ! 2Þ=2
and the slowly varying group envelope has a frequency ð!1 � !2Þ=2, half the frequency difference
between the components
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The beats of maximum intensity fluctuations thus have a frequency equal to the


difference �1 � �2 of the components. In the example here where the components have


equal amplitudes a, superposition will produce an amplitude which varies between 2a and


0; this is called complete or 100% modulation.


More generally an amplitude modulated wave may be represented by


y ¼ A cos ð!t � kxÞ


where the modulated amplitude


A ¼ a þ b cos! 0t


This gives


y ¼ a cos ð!t � kxÞ þ b


2
f½cos ð!þ ! 0Þt � kx� þ ½cos ð!� ! 0Þt � kx�g


so that here amplitude modulation has introduced two new frequencies !� ! 0, known as


combination tones or sidebands. Amplitude modulation of a carrier frequency is a common


form of radio transmission, but its generation of sidebands has led to the crowding of radio


frequencies and interference between stations.


Wave Groups and Group Velocity


Suppose now that the two frequency components of the last section have different phase


velocities so that !1=k1 6¼ !2=k2. The velocity of the maximum amplitude of the group;


that is, the group velocity


!1 � !2


k1 � k2


¼ �!


�k


is now different from each of these velocities; the superposition of the two waves will no


longer remain constant and the group profile will change with time.


A medium in which the phase velocity is frequency dependent ð!=k not constant) is


known as a dispersive medium and a dispersion relation expresses the variation of ! as a


function of k. If a group contains a number of components of frequencies which are nearly


equal the original expression for the group velocity is written


�!


�k
¼ d!


dk


The group velocity is that of the maximum amplitude of the group so that it is the velocity


with which the energy in the group is transmitted. Since ! ¼ kv, where v is the phase


velocity, the group velocity


v g ¼ d!


dk
¼ d


dk
ðkvÞ ¼ v þ k


dv


dk


¼ v � �
dv


d�
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where k ¼ 2�=�. Usually dv=d� is positive, so that v g < v. This is called normal


dispersion, but anomalous dispersion can arise when dv=d� is negative, so that v g > v.


We shall see when we discuss electromagnetic waves that an electrical conductor is


anomalously dispersive to these waves whilst a dielectric is normally dispersive except at the


natural resonant frequencies of its atoms. In the chapter on forced oscillations we saw that


the wave then acted as a driving force upon the atomic oscillators and that strong


absorption of the wave energy was represented by the dissipation fraction of the oscillator


impedance, whilst the anomalous dispersion curve followed the value of the reactive part of


the impedance.


The three curves of Figure 5.12 represent


� A non-dispersive medium where !=k is constant, so that v g ¼ v, for instance free space


behaviour towards light waves.


� A normal dispersion relation v g < v.


� An anomalous dispersion relation v g > v.


Example. The electric vector of an electromagnetic wave propagates in a dielectric with a


velocity v ¼ ð�"Þ�1=2
where � is the permeability and " is the permittivity. In free space


the velocity is that of light, c ¼ ð�0"0Þ�1=2
. The refractive index


n ¼ c=v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�"=�0"0


p
¼ ffiffiffiffiffiffiffiffiffiffi


� r" r
p


where � r ¼ �=�0 and " r ¼ "="0. For many substances


� r is constant and � 1, but " r is frequency dependent, so that v depends on �.


The group velocity


v g ¼ v � � dv=d� ¼ v 1 þ �


2" r


@" r


@�


� �


ω (k)


k


ω
k


V =


ω
k


V =
dω
dk


Vg =


dω
dk


Vg =


gradient


gradient


(c)


(a)


(b)


Vg  > V


Vg  = V


Vg  < V


anomalous
dispersion


no dispersion


normal
dispersion


Figure 5.12 Curves illustrating dispersion relations: (a) a straight line representing a non-
dispersive medium, v ¼ v g; (b) a normal dispersion relation where the gradient v ¼ !=k >
v g ¼ d!=dk; (c) an anomalous dispersion relation where v < v g


Wave Groups and Group Velocity 131







so that v g > v (anomalous dispersion) when @� r=@� is þve. Figure 5.13 shows the


behaviour of the refractive index n ¼ ffiffiffiffiffi
" r


p
versus !, the frequency, and �, the wavelength,


in the region of anomalous dispersion associated with a resonant frequency. The dotted


curve shows the energy absorption (compare this with Figure 3.9).


(Problems 5.14, 5.15, 5.16, 5.17, 5.18, 5.19)


Wave Group of Many Components. The Bandwidth Theorem


We have so far considered wave groups having only two frequency components. We may


easily extend this to the case of a group of many frequency components, each of amplitude


a, lying within the narrow frequency range �!.


We have already covered the essential physics of this problem on p. 20, where we found


the sum of the series


R ¼
Xn�1


0


a cos ð!t þ n�Þ


where � was the constant phase difference between successive components. Here we are


concerned with the constant phase difference ð�!Þt which results from a constant frequency


difference �! between successive components. The spectrum or range of frequencies of this


group is shown in Figure 5.14a and we wish to follow its behaviour with time.


We seek the amplitude which results from the superposition of the frequency


components and write it


R ¼ a cos!1t þ a cos ð!1 þ �!Þt þ a cos ð!1 þ 2�!Þt þ 
 
 

þ a cos ½!1 þ ðn � 1Þð�!Þ�t


Refractive
index


n = 2


n = 1


n =    r


Absorption
curve


λ ω0 ω


∋


Figure 5.13 Anomalous dispersion showing the behaviour of the refractive index n ¼ ffiffiffiffiffi
" r


p
versus !


and �, where !0 is a resonant frequency of the atoms of the medium. The absorption in such a region
is also shown by the dotted line
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The result is given on p. 21 by


R ¼ a
sin ½nð�!Þt=2�
sin ½ð�!Þt=2� cos �!!t


where the average frequency in the group or band is


�!! ¼ !1 þ 1
2
ðn � 1Þð�!Þ


Now nð�!Þ ¼ �!, the bandwidth, so the behaviour of the resultant R with time may be


written


RðtÞ ¼ a
sin ð�! 
 t=2Þ
sin ð�! 
 t=n2Þ cos �!!t ¼ na


sin ð�! 
 t=2Þ
�! 
 t=2


cos �!!t


when n is large,


or


RðtÞ ¼ A
sin�


�
cos �!!t


a


(a)


(b)


2A


half width
of maximum


t = 0


R (t )max = A


R (t ) =


A


∆ω


∆ω⋅t


∆t


δω
ω


π


ω
ω1


2
∆ω⋅t
2


sin


t


2πt  = ∆ω


cos ω t


Figure 5.14 A rectangular wave band of width �! having n frequency components of amplitude a
with a common frequency difference �!. (b) Representation of the frequency band on a time axis is a
cosine curve at the average frequency �!!, amplitude modulated by a sin�=� curve where
� ¼ �! 
 t=2. After a time t ¼ 2�=�! the superposition of the components gives a zero amplitude
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where A ¼ na and � ¼ �! 
 t=2 is half the phase difference between the first and last


components at time t.


This expression gives us the time behaviour of the band and is displayed on a time axis in


Figure 5.14b. We see that the amplitude RðtÞ is given by the cosine curve of the average


frequency �!! modified by the A sin�=� term.


At t ¼ 0, sin�=�! 1 and all the components superpose with zero phase difference to


give the maximum amplitude RðtÞ ¼ A ¼ na. After some time interval �t when


� ¼ �!�t


2
¼ �


the phases between the frequency components are such that the resulting amplitude RðtÞ is


zero.


The time �t which is a measure of the width of the central pulse of Figure 5.14b is


therefore given by


�!�t


2
¼ �


or ���t ¼ 1 where �! ¼ 2���.


The true width of the base of the central pulse is 2�t but the interval �t is taken as an


arbitrary measure of time, centred about t ¼ 0, during which the amplitude RðtÞ remains


significantly large ð> A=2Þ. With this arbitrary definition the exact expression


���t ¼ 1


becomes the approximation


���t � 1 or ð�!�t � 2�Þ


and this approximation is known as the Bandwidth Theorem.


It states that the components of a band of width �! in the frequency range will


superpose to produce a significant amplitude RðtÞ only for a time �t before the band


decays from random phase differences. The greater the range �! the shorter the period �t.


Alternatively, the theorem states that a single pulse of time duration �t is the result of


the superposition of frequency components over the range �!; the shorter the period �t of


the pulse the wider the range �! of the frequencies required to represent it.


When �! is zero we have a single frequency, the monochromatic wave which is


therefore required (in theory) to have an infinitely long time span.


We have chosen to express our wave group in the two parameters of frequency and time


(having a product of zero dimensions), but we may just as easily work in the other pair of


parameters wave number k and distance x.


Replacing ! by k and t by x would define the length of the wave group as �x in terms of


the range of component wavelengths �ð1=�Þ.
The Bandwidth Theorem then becomes


�x�k � 2�
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or


�x�ð1=�Þ � 1 i:e: �x � �2=��


Note again that a monochromatic wave with �k ¼ 0 requires �x ! 1; that is, an


infinitely long wavetrain.


In the wave group we have just considered the problem has been simplified by assuming


all frequency components to have the same amplitude a. When this is not the case, the


different values að!Þ are treated by Fourier methods as we shall see in Chapter 10.


We shall meet the ideas of this section several times in the course of this text, noting


particularly that in modern physics the Bandwidth Theorem becomes Heisenberg’s


Uncertainty Principle.


(Problem 5.20)


Transverse Waves in a Periodic Structure


At the end of the chapter on coupled oscillations we discussed the normal transverse


vibrations of n equal masses of separation a along a light string of length ðn þ 1Þa under a


tension T with both ends fixed. The equation of motion of the rth particle was found to be


m€yyr ¼
T


a
ðyrþ1 þ yr�1 � 2yrÞ


and for n masses the frequencies of the normal modes of vibration were given by


!2
j ¼ 2T


ma
1 � cos


j�


n þ 1


� �
ð4:15Þ


where j ¼ 1; 2; 3; . . . ; n. When the separation a becomes infinitesimally small ð¼ �x, say)


the term in the equation of motion


1


a
ðyrþ1 þ yr�1 � 2yrÞ !


1


�x
ðyrþ1 þ yr�1 � 2yrÞ


¼ ðyrþ1 � yrÞ
�x


� ðyr � yr�1Þ
�x


¼ @y


@x


� �
rþ1=2


� @y


@x


� �
r�1=2


¼ @ 2y


@x2


� �
r


dx


so that the equation of motion becomes


@ 2y


@t 2
¼ T


�


@ 2y


@x2
;


the wave equation, where � ¼ m=�x, the linear density and


y / eið!t�kxÞ


We are now going to consider the propagation of transverse waves along a linear array of


atoms, mass m, in a crystal lattice where the tension T now represents the elastic force


between the atoms (so that T=a is the stiffness) and a, the separation between the atoms, is
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about 1 Å or 10�10 m. When the clamped ends of the string are replaced by the ends of


the crystal we can express the displacement of the rth particle due to the transverse


waves as


yr ¼ Ar eið!t�kxÞ ¼ Ar eið!t�kraÞ;


since x ¼ ra. The equation of motion then becomes


�!2m ¼ T


a
ðeika þ e�ika � 2Þ


¼ T


a
ðeika=2 � e�ika=2Þ2 ¼ � 4T


a
sin2 ka


2


giving the permitted frequencies


!2 ¼ 4T


ma
sin2 ka


2
ð5:11Þ


This expression for !2 is equivalent to our earlier value at the end of Chapter 4:


!2
j ¼ 2T


ma
1 � cos


j�


n þ 1


� �
¼ 4T


ma
sin2 j�


2ðn þ 1Þ ð4:15Þ


if


ka


2
¼ j�


2ðn þ 1Þ


where j ¼ 1; 2; 3; . . . ; n.


But ðn þ 1Þa ¼ l, the length of the string or crystal, and we have seen that wavelengths


� are allowed where p�=2 ¼ l ¼ ðn þ 1Þa.


Thus


ka


2
¼ 2�


�

 a


2
¼ �a


�
¼ ja�


2ðn þ 1Þa ¼ j


p

 �a


�


if j ¼ p. When j ¼ p, a unit change in j corresponds to a change from one allowed number


of half wavelengths to the next so that the minimum wavelength is � ¼ 2a, giving a


maximum frequency !2
m ¼ 4T=ma. Thus, both expressions may be considered equivalent.


When � ¼ 2a, sin ka=2 ¼ 1 because ka ¼ �, and neighbouring atoms are exactly � rad


out of phase because


yr


yrþ1


/ eika ¼ ei� ¼ �1


The highest frequency is thus associated with maximum coupling, as we expect.


If in equation (5.11) we plot jsin ka=2j against k (Figure 5.15) we find that when ka


is increased beyond � the phase relationship is the same as for a negative value of
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ka beyond ��. It is, therefore, sufficient to restrict the values of k to the region


��
a


� k � �


a


which is known as the first Brillouin zone. We shall use this concept in the section on


electron waves in solids in Chapter 13.


For long wavelengths or low values of the wave number k, sin ka=2 ! ka=2 so that


!2 ¼ 4T


ma


k 2a2


4


and the velocity of the wave is given by


c2 ¼ !2


k 2
¼ Ta


m
¼ T


�


as before, where � ¼ m=a.


In general the phase velocity is given by


v ¼ !


k
¼ c


sin ka=2


ka=2


� �
ð5:12Þ


a dispersion relation which is shown in Figure 5.16. Only at very short wavelengths does


the atomic spacing of the crystal structure affect the wave propagation, and here the limiting


or maximum value of the wave number km ¼ �=a � 1010 m�1.


The elastic force constant T=a for a crystal is about 15 Nm�1; a typical ‘reduced’ atomic


mass is about 60 � 10�27 kg. These values give a maximum frequency


!2 ¼ 4T


ma
� 60


60 � 10�27
¼ 1027 rad s�1


that is, a frequency � � 5 � 1012 Hz.


−2π/a 2π/a
k


−π/a


sin ka/2


π/a0


Figure 5.15 jsin ka
2 j versus k from equation (5.11) shows the repetition of values beyond the region


��
a � k � �


a; this region defines a Brillouin zone
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(Note that the value of T=a used here for the crystal is a factor of 8 lower than that found


in Problem 4.4 for a single molecule. This is due to the interaction between neighbouring


ions and the change in their equilibrium separation.)


This frequency is in the infrared region of the electromagnetic spectrum. We shall see in


a later chapter that electromagnetic waves of frequency ! have a transverse electric field


vector E ¼ E0 e i!t, where E0 is the maximum amplitude, so that charged atoms or ions in a


crystal lattice could respond as forced oscillators to radiation falling upon the crystal,


which would absorb any radiation at the resonant frequency of its oscillating atoms.


Linear Array of Two Kinds of Atoms in an Ionic Crystal


We continue the discussion of this problem using a one dimensional line which contains


two kinds of atoms with separation a as before, those atoms of mass M occupying the odd


numbered positions, 2r � 1; 2r þ 1, etc. and those of mass m occupying the even numbered


positions, 2r; 2r þ 2, etc. The equations of motion for each type are


m€yy2r ¼
T


a
ðy2rþ1 þ y2r�1 � 2y2rÞ


and


M€yy2rþ1 ¼ T


a
ðy2rþ2 þ y2r � 2y2rþ1Þ


with solutions


y2r ¼ Am eið!t�2rkaÞ


y2rþ1 ¼ AM eið!t�ð2rþ1ÞkaÞ


where Am and AM are the amplitudes of the respective masses.


The equations of motion thus become


�!2mAm ¼ TAM


a
ðe�ika þ eikaÞ � 2TAm


a


kπ
akm =


ω


ωm


Figure 5.16 The dispersion relation !ðkÞ versus k for waves travelling along a linear one-
dimensional array of atoms in a periodic structure
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and


�!2MAM ¼ TAm


a
ðe�ika þ e ikaÞ � 2TAM


a


equations which are consistent when


!2 ¼ T


a


1


m
þ 1


M


� �
� T


a


1


m
þ 1


M


� �2


� 4 sin2ka


mM


" #1=2


ð5:13Þ


Plotting the dispersion relation ! versus k for the positive sign and m > M gives the upper


curve of Figure 5.17 with


!2 ¼ 2T


a


1


m
þ 1


M


� �
for k ¼ 0


and


!2 ¼ 2T


aM
for km ¼ �


2a
ðminimum � ¼ 4aÞ


The negative sign in equation (5.13) gives the lower curve of Figure 5.17 with


!2 ¼ 2Tk 2a2


aðM þ mÞ for very small k


and


!2 ¼ 2T


am
for k ¼ �


2a


Optical branch


m > M


Acoustical
branch


π
2a


ω


k


2T
a


1 +
m


1
2


1
M


2T
aM


1
2


2T
am


1
2


Figure 5.17 Dispersion relations for the two modes of transverse oscillation in a crystal structure
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The upper curve is called the ‘optical’ branch and the lower curve is known as the


‘acoustical’ branch. The motions of the two types of atom for each branch are shown in


Figure 5.18.


In the optical branch for long wavelengths and small k;Am=AM ¼ �M=m, and the atoms


vibrate against each other, so that the centre of mass of the unit cell in the crystal remains


fixed. This motion can be generated by the action of an electromagnetic wave when


alternate atoms are ions of opposite charge; hence the name ‘optical branch’. In the


acoustic branch, long wavelengths and small k give Am ¼ AM, and the atoms and their


centre of mass move together (as in longitudinal sound waves). We shall see in the next


chapter that the atoms may also vibrate in a longitudinal wave.


The transverse waves we have just discussed are polarized in one plane; they may also


vibrate in a plane perpendicular to the plane considered here. The vibrational energy of


these two transverse waves, together with that of the longitudinal wave to be discussed in


the next chapter, form the basis of the theory of the specific heats of solids, a topic to which


we shall return in Chapter 9.


Absorption of Infrared Radiation by Ionic Crystals


Radiation of frequency 3 � 1012 Hz. gives an infrared wavelength of 100 mm (10�4 m) and


a wave number k ¼ 2�=� � 6:104 m�1. We found the cut-off frequency in the crystal


lattice to give a wave number km � 1010 m�1, so that the k value of infrared radiation is a


negligible quantity relative to km and may be taken as zero. When the ions of opposite


charge �e move under the influence of the electric field vector E ¼ E0 e i!t of


electromagnetic radiation, the equations of motion (with k ¼ 0) become


�!2mAm ¼ 2T


a
ðAM � AmÞ � eE0


Optical mode


Acoustical mode


Figure 5.18 The displacements of the different atomic species in the two modes of transverse
oscillations in a crystal structure (a) the optical mode, and (b) the acoustic mode
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and


�!2MAM ¼ �2T


a
ðAM � AmÞ þ eE0


which may be solved to give


AM ¼ eE0


Mð!2
0 � !2Þ and Am ¼ �e


m


E0


ð!2
0 � !2Þ


where


!2
0 ¼ 2T


a


1


m
þ 1


M


� �


the low k limit of the optical branch.


Thus, when ! ¼ !0 infrared radiation is strongly absorbed by ionic crystals and the ion


amplitudes AM and Am increase. Experimentally, sodium chloride is found to absorb


strongly at � ¼ 61mm; potassium chloride has an absorption maximum at � ¼ 71mm.


(Problem 5.21)


Doppler Effect


In the absence of dispersion the velocity of waves sent out by a moving source is constant


but the wavelength and frequency noted by a stationary observer are altered.


In Figure 5.19 a stationary source S emits a signal of frequency � and wavelength � for a


period t so the distance to a stationary observer O is ��t. If the source S 0 moves towards O


at a velocity u during the period t then O registers a new frequency � 0.
We see that


��t ¼ ut þ �� 0t


S


S′


O


O


n t λ′


ut 


n t λ


Figure 5.19 If waves from a stationary source S are received by a stationary observer O at frequency
� and wavelength � the frequency is observed as � 0 and the wavelength as � 0 at O if the source S 0


moves during transmission. This is the Doppler effect
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which, for


c ¼ �� ¼ � 0� 0


gives


c � u


�
¼ � 0 ¼ c


� 0


Hence


� 0 ¼ �c


c � u


This observed change of frequency is called the Doppler Effect.


Suppose that the source S is now stationary but that an observer O 0 moves with a velocity


v away from S. If we superimpose a velocity �v on observer, source and waves, we bring


the observer to rest; the source now has a velocity �v and waves a velocity of c � v.


Using these values in the expression for � 0 gives a new observed frequency


� 00 ¼ �ðc � vÞ
c


(Problems 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31)


Problem 5.1
Show that y ¼ f2ðct þ xÞ is a solution of the wave equation


@ 2y


@x2
¼ 1


c2


@ 2y


@t 2


Problem 5.2
Show that the wave profile; that is,


y ¼ f1ðct � xÞ
remains unchanged with time when c is the wave velocity. To do this consider the expression for y at


a time t þ�t where �t ¼ �x=c.
Repeat the problem for y ¼ f 2ðct þ xÞ.


Problem 5.3
Show that


@y


@t
¼ þc


@y


@x


for a left-going wave drawing a diagram to show the particle velocities as in Figure 5.5 (note that c is


a magnitude and does not change sign).


Problem 5.4
A triangular shaped pulse of length l is reflected at the fixed end of the string on which it travels


ðZ 2 ¼ 1Þ. Sketch the shape of the pulse (see Figure 5.8) after a length (a) l=4 (b) l=2 (c) 3l=4 and


(d) l of the pulse has been reflected.
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Problem 5.5
A point mass M is concentrated at a point on a string of characteristic impedance �c. A transverse


wave of frequency ! moves in the positive x direction and is partially reflected and transmitted at the


mass. The boundary conditions are that the string displacements just to the left and right of the mass


are equal ðy i þ yr ¼ y tÞ and that the difference between the transverse forces just to the left and


right of the mass equal the mass times its acceleration. If A1, B1 and A2 are respectively the incident,


reflected and transmitted wave amplitudes show that


B1


A1


¼ �iq


1 þ iq
and


A2


A1


¼ 1


1 þ iq


where q ¼ !M=2�c and i2 ¼ �1.


Problem 5.6
In problem 5.5, writing q ¼ tan �, show that A2 lags A1 by � and that B1 lags A1 by ð�=2 þ �Þ for


0 < � < �=2.
Show also that the reflected and transmitted energy coefficients are represented by sin2 � and


cos2 �, respectively.


Problem 5.7
If the wave on the string in Figure 5.6 propagates with a displacement


y ¼ a sin ð!t � kxÞ


Show that the average rate of working by the force (average value of transverse force times


transverse velocity) equals the rate of energy transfer along the string.


Problem 5.8
A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of amplitude


0.1 m at one end of a very long string of linear density 0.01 kg=m. Show that the rate of energy


transfer along the string is 3�=20 W and that the wave velocity is 30=�m s�1.


Problem 5.9
In the figure, media of impedances Z 1 and Z 3 are separated by a


medium of intermediate impedance Z2 and thickness �=4 mea-


sured in this medium. A normally incident wave in the first


medium has unit amplitude and the reflection and transmission


coefficients for multiple reflections are shown. Show that the total


reflected amplitude in medium 1 which is


R þ tTR 0ð1 þ rR 0 þ r 2R 02 . . .Þ


is zero at R ¼ R 0 and show that this defines the condition


Z 2
2 ¼ Z 1Z 3


(Note that for zero total reflection in medium 1, the first reflection


R is cancelled by the sum of all subsequent reflections.)


T


1


R


T t R ′


T R ′


T R ′ r


T R ′3r 2


T t R ′3r 2


T t R ′2r T R ′2r 2


T R ′2r 


Z 1 Z 2 Z 3
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Problem 5.10
The relation between the impedance Z and the refractive index n of a dielectric is given by Z ¼ 1=n.


Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free space


wavelength of 5:5 � 10�7 m. Show that reflections at this wavelength are avoided by a coating of


refractive index 1.22 and thickness 1:12 � 10�7 m.


Problem 5.11
Prove that the displacement yn of the standing wave expression in equation (5.10) satisfies the time


independent form of the wave equation


@ 2y


@x2
þ k 2y ¼ 0:


Problem 5.12
The total energy En of a normal mode may be found by an alternative method. Each section dx of the


string is a simple harmonic oscillator with total energy equal to the maximum kinetic energy of


oscillation


k:e:max ¼ 1
2
� dxð _yy2


nÞmax ¼ 1
2
� dx!2


nðy 2
nÞmax


Now the value of ðy2
nÞmax at a point x on the string is given by


ðy2
nÞmax ¼ ðA2


n þ B2
nÞ sin 2 !nx


c


Show that the sum of the energies of the oscillators along the string; that is, the integral


1
2
�!2


n


ð l


0


ðy2
nÞmax dx


gives the expected result.


Problem 5.13
The displacement of a wave on a string which is fixed at both ends is given by


yðx; tÞ ¼ A cos ð!t � kxÞ þ rA cos ð!t þ kxÞ


where r is the coefficient of amplitude reflection. Show that this may be expressed as the


superposition of standing waves


yðx; tÞ ¼ Að1 þ rÞ cos!t cos kx þ Að1 � rÞ sin!t sin kx:


Problem 5.14
A wave group consists of two wavelengths � and �þ�� where ��=� is very small.


Show that the number of wavelengths � contained between two successive zeros of the modulating
envelope is � �=��.


Problem 5.15
The phase velocity v of transverse waves in a crystal of atomic separation a is given by


v ¼ c
sin ðka=2Þ
ðka=2Þ


� �
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where k is the wave number and c is constant. Show that the value of the group velocity is


c cos
ka


2


What is the limiting value of the group velocity for long wavelengths?


Problem 5.16
The dielectric constant of a gas at a wavelength � is given by


" r ¼
c2


v 2
¼ A þ B


�2
� D�2


where A, B and D are constants, c is the velocity of light in free space and v is its phase velocity. If


the group velocity is V g show that


V g" r ¼ vðA � 2D�2Þ


Problem 5.17
Problem 3.10 shows that the relative permittivity of an ionized gas is given by


" r ¼
c2


v 2
¼ 1 � ! e


!


� �2


where v is the phase velocity, c is the velocity of light and ! e is the constant value of the


electron plasma frequency. Show that this yields the dispersion relation !2 ¼ !2
e þ c2k 2,


and that as !! ! e the phase velocity exceeds that of light, c, but that the group velocity


(the velocity of energy transmission) is always less than c.


Problem 5.18
The electron plasma frequency of Problem 5.17 is given by


!2
e ¼ nee2


me" 0


:


Show that for an electron number density ne � 1020ð10�5 of an atmosphere), electromagnetic waves


must have wavelengths � < 3 � 10�3 m (in the microwave region) to propagate. These are typical


wavelengths for probing thermonuclear plasmas at high temperatures.


" 0 ¼ 8:8 � 10�12 F m�1


m e ¼ 9:1 � 10�31 kg


e ¼ 1:6 � 10�19 C


Problem 5.19
In relativistic wave mechanics the dispersion relation for an electron of velocity v ¼ �hk=m is given


by !2=c2 ¼ k 2 þ m2c 2=�h2, where c is the velocity of light, m is the electron mass (considered


constant at a given velocity) �h ¼ h=2� and h is Planck’s constant. Show that the product of the group


and particle velocities is c 2.
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Problem 5.20
The figure shows a pulse of length �t given by y ¼ A cos!0t.


Show that the frequency representation


yð!Þ ¼ a cos!1t þ a cos ð!1 þ �!Þt 
 
 
 þ a cos ½!1 þ ðn � 1Þð�!Þ�t


is centred on the average frequency !0 and that the range of frequencies making significant


contributions to the pulse satisfy the criterion


�!�t � 2�


Repeat this process for a pulse of length �x with y ¼ A cos k 0x to show that in k space the pulse is


centred at k0 with the significant range of wave numbers �k satisfying the criterion �x�k � 2�:


∆ t


t


A y = A cos ω0 t


Problem 5.21
The elastic force constant for an ionic crystal is � 15 N m�1. Show that the experimental values for


the frequencies of infrared absorption quoted at the end of this chapter for NaCl and KCl are in


reasonable agreement with calculated values.


1 a:m:u: ¼ 1:66 � 10�27 kg


Na mass ¼ 23 a:m:u:


K mass ¼ 39 a:m:u:


Cl mass ¼ 35 a:m:u:


Problem 5.22
Show that, in the Doppler effect, the change of frequency noted by a stationary observer O as a


moving source S 0 passes him is given by


�� ¼ 2�cu


ðc 2 � u 2Þ


where c ¼ ��, the signal velocity and u is the velocity of S 0.


Problem 5.23
Suppose, in the Doppler effect, that a source S 0 and an observer O 0 move in the same direction with


velocities u and v, respectively. Bring the observer to rest by superimposing a velocity �v on the


system to show that O 0 now registers a frequency


� 000 ¼ �ðc � vÞ
ðc � uÞ


Problem 5.24
Light from a star of wavelength 6 � 10�7 m is found to be shifted 10�11 m towards the red when


compared with the same wavelength from a laboratory source. If the velocity of light is


3 � 10 8 m s�1 show that the earth and the star are separating at a velocity of 5 Km s�1.
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Problem 5.25
An aircraft flying on a level course transmits a signal of 3 � 109 Hz which is reflected from a distant


point ahead on the flight path and received by the aircraft with a frequency difference of 15 kHz.


What is the aircraft speed?


Problem 5.26
Light from hot sodium atoms is centred about a wavelength of 6 � 10�7 m but spreads 2 � 10�12 m


on either side of this wavelength due to the Doppler effect as radiating atoms move towards and


away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature


is � 900 K.


Problem 5.27
Show that in the Doppler effect when the source and observer are not moving in the same direction


that the frequencies


� 0 ¼ �c


c � u 0 ; � 00 ¼ �ðc � vÞ
c


and


� 000 ¼ �
c � v


c � u


� �
are valid if u and v are not the actual velocities but the components of these velocities along the


direction in which the waves reach the observer.


Problem 5.28
In extending the Doppler principle consider the accompanying figure where O is a stationary


observer at the origin of the coordinate system Oðx; tÞ and O 0 is an observer situated at the origin of


the system O 0ðx 0; t 0Þ which moves with a constant velocity v in the x direction relative to the system


O. When O and O 0 are coincident at t ¼ t 0 ¼ 0 a light source sends waves in the x direction with


constant velocity c. These waves obey the relation


0 � x2 � c 2t 2ðseen by OÞ � x 02 � c2t 02ðseen by O 0Þ: ð1Þ
Since there is only one relative velocity v, the transformation


x 0 ¼ kðx � vtÞ ð2Þ
and


x ¼ k 0ðx 0 þ vt 0Þ ð3Þ
must also hold. Use (2) and (3) to eliminate x 0 and t 0 from (1) and show that this identity is satisfied


only by k ¼ k 0 ¼ 1=ð1 � � 2Þ 1=2
, where � ¼ v=c. (Hint—in the identity of equation (1) equate


coefficients of the variables to zero.).


0 0 ′ v


 v t


0 (xt ) 0′ (x ′t  ′)
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This is the Lorentz transformation in the theory of relativity giving


x 0 ¼ ðx � vtÞ
ð1 � � 2Þ 1=2


; x ¼ x 0 þ vt 0


ð1 � � 2Þ 1=2


t 0 ¼ ðt � ðv=c 2ÞxÞ
ð1 � � 2Þ 1=2


; t ¼ ðt 0 þ ðv=c 2Þx 0Þ
ð1 � � 2Þ1=2


Problem 5.29
Show that the interval �t ¼ t2 � t 1 seen by O in Problem 5.28 is seen as �t 0 ¼ k�t by O 0 and that


the length l ¼ x2 � x1 seen by O is seen by O 0 as l 0 ¼ l=k.


Problem 5.30
Show that two simultaneous events at x 2 and x1ðt2 ¼ t1Þ seen by O in the previous problems are not


simultaneous when seen by O 0 (that is, t 01 6¼ t 02Þ.


Problem 5.31
Show that the order of events seen by Oðt2 > t1Þ of the previous problems will not be reversed


when seen by O 0 (that is, t 02 > t 01Þ as long as the velocity of light c is the greatest velocity


attainable.


Summary of Important Rules


Wave Equation
@ 2y


@x2
¼ 1


c2


@ 2y


@t 2


Wave (phase) velocity ¼ c ¼ !


k
¼ @x


@t


k ¼ wave number ¼ 2�


�


where the wavelength � defines separation between two oscillations with phase difference


of 2� rad.


Particle velocity
@y


@t
¼ �c


@y


@x


Displacement y ¼ a eið!t�kxÞ;
where a is wave amplitude.


Characteristic Impedance of a String


Z ¼ transverse force


transverse velocity
¼ �T


@y


@x


. @y


@t
¼ �c
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Reflection and Transmission Coefficients


Reflected Amplitude


Incident Amplitude
¼ Z1 � Z2


Z1 þ Z2


Transmitted Amplitude


Incident Amplitude
¼ 2Z1


Z1 þ Z2


Reflected Energy


Incident Energy
¼ Z1 � Z2


Z1 þ Z2


� �2


Transmitted Energy


Incident Energy
¼ 4Z1Z2


ðZ1 þ Z2Þ2


Impedance Matching


Impedances Z1 and Z3 are matched by insertion of impedance Z2 where Z 2
2 ¼ Z1Z3


Thickness of Z2 is �=4 measured in Z2.


Standing Waves. Normal Modes. Harmonics


Solution of wave equation separates time and space dependence to satisfy time independent


wave equation


@ 2y


@x2
þ k 2y ¼ 0 ðcancel e i!tÞ


Standing waves on string of length l have wavelength �n where


n
�n


2
¼ l


Displacement of nth harmonic is


yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx


c


Energy of nth harmonic (string mass m)


En ¼ KEn þ PEn ¼ 1


4
m!2


nðA2
n þ B2


nÞ
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Group Velocity


In a dispersive medium the wave velocity v varies with frequency ! (wave number k). The


energy of a group of such waves travels with the group velocity


v g ¼ d!


dk
¼ v þ k dv


dk
¼ v � �


dv


d�


Rectangular Wave Group of n Frequency Components Amplitude a, Width �!, represented


in time by


RðtÞ ¼ a 
 sin ð�! 
 t=2Þ
sin ð�! 
 t=n 
 2Þ cos �!!t


where �!! is average frequency. RðtÞ is zero when


�! 
 t


2
¼ �


i.e. Bandwidth Theorem gives


�! 
�t ¼ 2�


or


�x�k ¼ 2�


A pulse of duration �t requires a frequency band width �! to define it in frequency space


and vice versa.


Doppler Effect


Signal of frequency � and velocity c transmitted by a stationary source S and received by a


stationary observer O becomes


� 0 ¼ �c


c � u


when source is no longer stationary but moves towards O with a velocity u.
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Longitudinal Waves


In deriving the wave equation


@ 2y


@x2
¼ 1


c2


@ 2y


@t 2


in Chapter 5, we used the example of a transverse wave and continued to discuss waves of


this type on a vibrating string. In this chapter we consider longitudinal waves, waves in


which the particle or oscillator motion is in the same direction as the wave propagation.


Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,


liquids and solids, but we shall concentrate on gases and solids. In the case of gases,


limitations of thermodynamic interest are imposed; in solids the propagation will depend


on the dimensions of the medium. Neither a gas nor a liquid can sustain the transverse


shear necessary for transverse waves, but a solid can maintain both longitudinal and


transverse oscillations.


Sound Waves in Gases


Let us consider a fixed mass of gas, which at a pressure P0 occupies a volume V0 with a


density �0. These values define the equilibrium state of the gas which is disturbed, or


deformed, by the compressions and rarefactions of the sound waves. Under the influence of


the sound waves


the pressure P0 becomes P ¼ P0 þ p


the volume V0 becomes V ¼ V0 þ v


and


the density �0 becomes � ¼ �0 þ �d:


The excess pressure pm is the maximum pressure amplitude of the sound wave and p is an


alternating component superimposed on the equilibrium gas pressure P0.
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The fractional change in volume is called the dilatation, written v=V0 ¼ �, and the


fractional change of density is called the condensation, written �d=�0 ¼ s. The values of �
and s are �10�3 for ordinary sound waves, and a value of pm ¼ 2 � 10�5 N m�2 (about


10�10 of an atmosphere) gives a sound wave which is still audible at 1000 Hz. Thus, the


changes in the medium due to sound waves are of an extremely small order and define


limitations within which the wave equation is appropriate.


The fixed mass of gas is equal to


�0V0 ¼ �V ¼ �0V0ð1 þ �Þð1 þ sÞ
so that ð1 þ �Þð1 þ sÞ ¼ 1, giving s ¼ �� to a very close approximation. The elastic


property of the gas, a measure of its compressibility, is defined in terms of its bulk modulus


B ¼ � dP


dV=V
¼ �V


dP


dV


the difference in pressure for a fractional change in volume, a volume increase with fall in


pressure giving the negative sign. The value of B depends on whether the changes in the gas


arising from the wave motion are adiabatic or isothermal. They must be thermodynamically


reversible in order to avoid the energy loss mechanisms of diffusion, viscosity and thermal


conductivity. The complete absence of these random, entropy generating processes defines


an adiabatic process, a thermodynamic cycle with a 100% efficiency in the sense that none


of the energy in the wave, potential or kinetic, is lost. In a sound wave such thermodynamic


concepts restrict the excess pressure amplitude; too great an amplitude raises the local


temperature in the gas at the amplitude peaks and thermal conductivity removes energy


from the wave system. Local particle velocity gradients will also develop, leading to


diffusion and viscosity.


Using a constant value of the adiabatic bulk modulus limits sound waves to small


oscillations since the total pressure P ¼ P0 þ p is taken as constant; larger amplitudes lead


to non-linear effects and shock waves, which we shall discuss separately in Chapter 15.


All adiabatic changes in the gas obey the relation PV� ¼ constant, where � is the ratio of


the specific heats at constant pressure and volume, respectively.


Differentiation gives


V � dP þ �PV ��1 dV ¼ 0


or


�V
dP


dV
¼ �P ¼ Ba (where the subscript a denotes adiabatic)


so that the elastic property of the gas is �P, considered to be constant. Since P ¼ P0 þ p,


then dP ¼ p, the excess pressure, giving


Ba ¼ � p


v=V0


or p ¼ �Ba� ¼ Bas


In a sound wave the particle displacements and velocities are along the x-axis and we


choose the co-ordinate � to define the displacement where �ðx; tÞ.
In obtaining the wave equation we consider the motion of an element of the gas of


thickness �x and unit cross section. Under the influence of the sound wave the behaviour
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of this element is shown in Figure 6.1. The particles in the layer x are displaced a distance �
and those at x þ�x are displaced a distance � þ��, so that the increase in the thick-


ness �x of the element of unit cross section (which therefore measures the increase in


volume) is


�� ¼ @�


@x
�x


and


� ¼ v


V0


¼ @�


@x


� �
�x=�x ¼ @�


@x
¼ �s


where @�=�x is called the strain.


The medium is deformed because the pressures along the x-axis on either side of the thin


element are not in balance (Figure 6.1). The net force acting on the element is given by


Px � Pxþ�x ¼ Px � Px þ
@Px


@x
�x


� �� �


¼ � @Px


@x
�x ¼ � @


@x
ðP0 þ pÞ�x ¼ � @p


@x
�x


The mass of the element is �0�x and its acceleration is given, to a close approxmation, by


@ 2�=dt 2.


From Newton’s Law we have


� @p


@x
�x ¼ �0�x


@ 2�


@t 2


Px


η η + ∆η


∆x


∆x + ∆η = ∆x + ∂η
∂x


∆x


∂Px


∂x
∆xPx +


Figure 6.1 Thin element of gas of unit cross-section and thickness �x displaced an amount � and
expanded by an amount ð��=@xÞ�x under the influence of a pressure differene �ð@Px=@xÞ�x
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where


p ¼ �Ba� ¼ �Ba


@�


@x


so that


� @p


@x
¼ Ba


@ 2�


@x2
; giving Ba


@ 2�


@x2
¼ �0


@ 2�


@t 2


But Ba=�0 ¼ �P=�0 is the ratio of the elasticity to the inertia or density of the gas, and this


ratio has the dimensions


force


area
� volume


mass
¼ ðvelocityÞ2; so


�P


�0


¼ c2


where c is the sound wave velocity.


Thus


@ 2�


@x2
¼ 1


c2


@ 2�


@t 2


is the wave equation. Writing �m as the maximum amplitude of displacement we have the


following expressions for a wave in the positive x-direction:


� ¼ �m eið!t�kxÞ _�� ¼ @�


@t
¼ i!�


� ¼ @�


@x
¼ �ik� ¼ �s ðso s ¼ ik�Þ


p ¼ Bas ¼ iBak�


The phase relationships between these parameters (Figure 6.2a) show that when the wave is


in the positive x-direction, the excess pressure p, the fractional density increase s and the


particle velocity _�� are all 
=2 rad in phase ahead of the displacement �, whilst the volume


change (
 rad out of phase with the density change) is 
=2 rad behind the displacement.


These relationships no longer hold when the wave direction is reversed (Figure 6.2b); for a


wave in the negative x-direction


� ¼ �m eið!tþkxÞ _�� ¼ @�


@t
¼ i!�


� ¼ @�


@x
¼ �ik� ¼ �s ðso s ¼ ik�Þ


p ¼ Bas ¼ �iBak�


In both waves the particle displacement � is measured in the positive x-direction and the


thin element �x of the gas oscillates about the value � ¼ 0, which defines its central


position. For a wave in the positive x-direction the value � ¼ 0, with _�� a maximum in the


positive x-direction, gives a maximum positive excess pressure (compression) with a


maximum condensation sm (maximum density) and a minimum volume. For a wave in the
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negative x-direction, the same value � ¼ 0, with _�� a maximum in the positive x-direction,


gives a maximum negative excess pressure (rarefaction), a maximum volume and a


minimum density. To produce a compression in a wave moving in the negative x-direction


the particle velocity _�� must be a maximum in the negative x-direction at � ¼ 0. This


distinction is significant when we are defining the impedance of the medium to the waves.


A change of sign is involved with a change of direction—a convention we shall also have


to follow when discussing the waves of Chapters 7 and 8.


Energy Distribution in Sound Waves


The kinetic energy in the sound wave is found by considering the motion of the individual


gas elements of thickness �x.


Each element will have a kinetic energy per unit cross section


�Ekin ¼ 1
2
�0 �x _�� 2


where _�� will depend upon the position x of the element. The average value of the kinetic


energy density is found by taking the value of _�� 2 averaged over a region of n wavelengths.


Now


_�� ¼ _��m sin
2



�
ðct � xÞ


so that


_�� 2 ¼
_�� 2


m


Ð n�


0
sin2 2
ðct � xÞ=��x


n�
¼ 1


2
_�� 2


m


so that the average kinetic energy density in the medium is


�E kin ¼ 1
4
�0 _��


2
m ¼ 1


4
�0!


2� 2
m


p,s,


p,s


η ηη


ηη


∂
∂x


, δ


η∂
∂x


, δ


(a) (b)


Wave in +ve x
direction


Wave in −ve x
direction


Figure 6.2 Phase relationships between the particle displacement �, particle velocity _��, excess
pressure p and condensation s ¼ �� (the dilatation) for waves travelling in the positive and
negative x directions. The displacement � is taken in the positive x direction for both waves
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(a simple harmonic oscillator of maximum amplitude a has an average kinetic energy over


one cycle of 1
4


m!2a2).


The potential energy density is found by considering the work P dV done on the fixed


mass of gas of volume V0 during the adiabatic changes in the sound wave. This work is


expressed for the complete cycle as


�Epot ¼ �
ð


PdV ¼ � �1


2



ð 2



0


pvdð!tÞ ¼ pmvm


2
:


p


pm


¼ �v


vm


¼ sinð!t � kxÞ
� �


The negative sign shows that the potential energy change is positive in both


a compression ( p positive, dV negative) and a rarefaction ( p negative, dV positive)


Figure 6.3.


The condensation


s ¼ �
Ð


dv


V0


¼ �v


V0


¼ ��


we write


s


sm


¼ ��
�m


¼ sinð!t � kxÞ and �v ¼ V0 s


which, with


p ¼ Bas


gives


�Epot ¼
�1


2



ð2



0


pvdð!tÞ ¼ BaV0


2



ð 2



0


s2dð!tÞ


Work done
in compression


Work done
in rarefaction


V0


P0


+p


v−v


−p


Figure 6.3 Shaded triangles show that potential energy pv
2 ¼ pmvm


4 gained by gas in compression
equals that gained in rarefaction when both p and v change sign
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where s ¼ �� and the thickness �x of the element of unit cross section represents its


volume V0.


Now


� ¼ �m e ið!t	kxÞ


so that


� ¼ @�


@x
¼ 	 1


c


@�


@t
; where c ¼ !


k


Thus


�Epot ¼
1


2


Ba


c2
_�� 2�x ¼ 1


2
�0 _��


2�x


and its average value over n� gives the potential energy density


�E pot ¼ 1
4
�0 _��


2
m


We see that the average values of the kinetic and potential energy density in the sound


wave are equal, but more important, since the value of each for the element �x is
1
2
�0 _��


2�x, we observe that the element possesses maximum (or minimum) potential and


kinetic energy at the same time. A compression or rarefaction produces a maximum in the


energy of the element since the value _�� governs the energy content. Thus, the energy in the


wave is distributed in the wave system with distance as shown in Figure 6.4. Note that this


distribution is non-uniform with distance unlike that for a transverse wave.


Intensity of Sound Waves


This is a measure of the energy flux, the rate at which energy crosses unit area, so that it is


the product of the energy density (kinetic plus potential) and the wave velocity c. Normal


sound waves range in intensity between 10�12 and 1 W m�2, extremely low levels which


testify to the sensitivity of the ear. The roar of a large football crowd greeting a goal will


just about heat a cup of coffee.


Total
energy
in sound
wave


Distance
x


Figure 6.4 Energy distribution in space for a sound wave in a gas. Both potential and kinetic
energies are at a maximum when the particle velocity _�� is a maximum and zero at _�� ¼ 0
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The intensity may be written


I ¼ 1
2
�0c _�� 2


m ¼ 1
2
�0c!2� 2


m ¼ �0c _�� 2
rms ¼ p2


rms=�0c ¼ p rms _�� rms


A commonly used standard of sound intensity is given by


I0 ¼ 10�2 W m�2


which is about the level of the average conversational tone between two people standing


next to each other. Shouting at this range raises the intensity by a factor of 100 and in the


range 100 I0 to 1000 I0 (10 W m�2) the sound is painful.


Whenever the sound intensity increases by a factor of 10 it is said to have increased by


1 B so the dynamic range of the ear is about 12 B. An intensity increase by a factor of


100:1 ¼ 1 � 26


increases the intensity by 1 dB, a change of loudness which is just detected by a person


with good hearing. dB is a decibel.


We see that the product �0c appears in most of the expressions for the intensity; its


significance becomes apparent when we define the impedance of the medium to the waves


as the


Specific Acoustic Impedance ¼ excess pressure


particle velocity
¼ p


_��


(the ratio of a force per unit area to a velocity).


Now, for a wave in the positive x-direction.


p ¼ Bas ¼ iBak� and _�� ¼ i!�


so that,


p


_��
¼ Bak


!
¼ Ba


c
¼ �oc


Thus, the acoustic impedance presented by the medium to these waves, as in the case of the


transverse waves on the string, is given by the product of the density and the wave velocity


and is governed by the elasticity and inertia of the medium. For a wave in the negative


x-direction, the specific acoustic impedance


p


_��
¼ � iBak�


i!�
¼ ��0c


with a change of sign because of the changed phase relationship.


The units of �0c are normally stated as kg m�2 s�1 in books on practical acoustics; in


these units air has a specific acoustic impedance value of 400, water a value of 1.45�106


and steel a value of 3.9�107. These values will become more significant when we use them


later in examples on the reflection and transmission of sound waves.
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Although the specific acoustic impedance �0c is a real quantity for plane sound waves, it


has an added reactive component ik=r for spherical waves, where r is the distance travelled


by the wavefront. This component tends to zero with increasing r as the spherical wave


becomes effectively plane.


(Problems 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8)


Longitudinal Waves in a Solid


The velocity of longitudinal waves in a solid depends upon the dimensions of the specimen


in which the waves are travelling. If the solid is a thin bar of finite cross section the analysis


for longitudinal waves in a gas is equally valid, except that the bulk modulus Ba is replaced


by Young’s modulus Y, the ratio of the longitudinal stress in the bar to its longitudinal


strain.


The wave equation is then


@ 2�


@x2
¼ 1


c2


@ 2�


@t 2
; with c2 ¼ Y


�


A longitudinal wave in a medium compresses the medium and distorts it laterally.


Because a solid can develop a shear force in any direction, such a lateral distortion is


accompanied by a transverse shear. The effect of this upon the wave motion in solids of


finite cross section is quite complicated and has been ignored in the very thin specimen


above. In bulk solids, however, the longitudinal and transverse modes may be considered


separately.


We have seen that the longitudinal compression produces a strain @�=@x; the


accompanying lateral distortion produces a strain @�=@y (of opposite sign to @�=@x and


perpendicular to the x-direction).


Here � is the displacement in the y-direction and is a function of both x and y. The ratio


of these strains


� @�


@y


. @�
@x


¼ 


is known as Poisson’s ratio and is expressed in terms of Lamé’s elastic constants � and �
for a solid as


 ¼ �


2ð�þ �Þ where � ¼ Y


ð1 þ Þð1 � 2Þ
These constants are always positive, so that  < 1


2
, and is commonly � 1


3
. In terms of these


constants Young’s modulus becomes


Y ¼ ð�þ 2�� 2�Þ


The constant � is the transverse coefficient of rigidity; that is, the ratio of the transverse


stress to the transverse strain. It plays the role of the elasticity in the propagation of pure
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transverse waves in a bulk solid which Young’s modulus plays for longitudinal waves in


a thin specimen. Figure 6.5 illustrates the shear in a transverse plane wave, where the


transverse strain is defined by @�=@x. The transverse stress at x is therefore Tx ¼ �@�=@x.


The equation of transverse motion of the thin element dx is then given by


Txþdx � Tdx ¼ � dx€yy


where � is the density, or


@


@x
�
@�


@x


� �
¼ �€yy


but €yy ¼ @ 2�=@t 2, hence


@ 2�


@x2
¼ �


�


@ 2�


@t 2


the wave equation with a velocity given by c2 ¼ �=�.
The effect of the transverse rigidity � is to stiffen the solid and increase the elastic


constant governing the propagation of longitudinal waves. In a bulk solid the velocity of


these waves is no longer given by c2 ¼ Y=�, but becomes


c2 ¼ �þ 2�


�


Since Young’s modulus Y ¼ �þ 2�� 2�, the elasticity is increased by the amount


2� � �, so that longitudinal waves in a bulk solid have a higher velocity than the same


waves along a thin specimen.


In an isotropic solid, where the velocity of propagation is the same in all directions,


the concept of a bulk modulus, used in the discussion on waves in gases, holds equally


(x )


=   (xy )β


β


β
β


β 


x


dy


x


x


x + dx


(x + dx )


∂
∂


= transverse strain


Figure 6.5 Shear in a bulk solid producing a transverse wave. The transverse shear strain is @�=@x
and the transverse shear stress is � @�=@x, where � is the shear modulus of rigidity
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well. Expressed in terms of Lamé’s elastic constants the bulk modulus for a solid is


written


B ¼ �þ 2
3
� ¼ Y ½3ð1 � 2Þ��1


the longitudinal wave velocity for a bulk solid becomes


cL ¼ B þ ð4=3Þ�
�


� �1=2


whilst the transverse velocity remains as


cT ¼ �


�


� �1=2


Application to Earthquakes


The values of these velocities are well known for seismic waves generated by earthquakes.


Near the surface of the earth the longitudinal waves have a velocity of 8 km s�1 and the


transverse waves travel at 4.45 km s�1. The velocity of the longitudinal waves increases


with depth until, at a depth of about 1800 miles, no waves are transmitted because of a


discontinuity and severe mismatch of impedances associated with the fluid core.


At the surface of the earth the transverse wave velocity is affected by the fact that stress


components directed through the surface are zero there and these waves, known as


Rayleigh Waves, travel with a velocity given by


c ¼ f ðÞ �


�


� �1=2


where


f ðÞ ¼ 0:9194 when  ¼ 0 � 25


and


f ðÞ ¼ 0:9553 when  ¼ 0 � 5


The energy of the Rayleigh Waves is confined to two dimensions; their amplitude is


often much higher than that of the three dimensional longitudinal waves and therefore they


are potentially more damaging.


In an earthquake the arrival of the fast longitudinal waves is followed by the Rayleigh


Waves and then by a complicated pattern of reflected waves including those affected by the


stratification of the earth’s structure, known as Love Waves.
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(Problem 6.9)


Longitudinal Waves in a Periodic Structure


Lamé’s elastic constants, � and �, which are used to define such macroscopic quantities as


Young’s modulus and the bulk modulus, are themselves determined by forces which


operate over interatomic distances. The discussion on transverse waves in a periodic


structure has already shown that in a one-dimensional array representing a crystal lattice a


stiffness s ¼ T=a dyn cm�1 can exist between two atoms separated by a distance a.


When the waves along such a lattice are longitudinal the atomic displacements from


equilibrium are represented by � (Figure 6.6). An increase in the separation between two


atoms from a to a þ � gives a strain " ¼ �=a, and a stress normal to the face area a2 of a


unit cell in a crystal equal to s�=a2 ¼ s"=a, a force per unit area.


Now Young’s modulus is the ratio of this longitudinal stress to the longitudinal strain, so


that Y ¼ s"="a or s ¼ Ya. The longitudinal vibration frequency of the atoms of mass m


connected by stiffness constants s is given, very approximately by


� ¼ !


2

¼ 1


2



ffiffiffiffi
s


m


r
� 1


2
a


ffiffiffiffi
Y


�


s
� c0


2
a


where m ¼ �a3 and c0 is the velocity of sound in a solid. The value of


c0 � 5 � 103 m s�1, and a � 2 � 10�10 m, so that � � 3 � 1012 Hz, which is almost


the same value as the frequency of the transverse wave in the infrared region of the


electromagnetic spectrum. The highest ultrasonic frequency generated so far is about a


factor of 10 lower than � ¼ c0=2
a. At frequencies � 5 � 1012 to 1013 Hz many


interesting experimental results must be expected. A more precise mathematical treatment


yields the same equation of motion for the r th particle as in the transverse wave;


namely


m€�� r ¼ sð� rþ1 þ � r�1 � 2� rÞ


where s ¼ T=a and


� r ¼ �max e ið!t�kraÞ


aa


ηr −1 ηr +1ηr 


Figure 6.6 Displacement of atoms in a linear array due to a longitudinal wave in a crysal structure
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The results are precisely the same as in the case of transverse waves and the shape of the


dispersion curve is also similar. The maximum value of the cut-off frequency !m is,


however, higher for the longitudinal than for the transverse waves. This is because the


longitudinal elastic constant Y is greater than the transverse constant �; that is, the force


required for a given displacement in the longitudinal direction is greater than that for


the same displacement in the transverse direction.


Reflection and Transmission of Sound Waves at Boundaries


When a sound wave meets a boundary separating two media of different acoustic


impedances two boundary conditions must be met in considering the reflection and


transmission of the wave. They are that


(i) the particle velocity _��


and


(ii) the acoustic excess pressure p


are both continuous across the boundary. Physically this ensures that the two media are in


complete contact everywhere across the boundary.


Figure 6.7 shows that we are considering a plane sound wave travelling in a medium of


specific acoustic impedance Z1 ¼ �1c1 and meeting, at normal incidence, an infinite plane


boundary separating the first medium from another of specific acoustic impedance


Z2 ¼ �2c2. If the subscripts i, r and t denote incident, reflected and transmitted


respectively, then the boundary conditions give


� i þ _�� r ¼ _�� t ð6:1Þ
and


p i þ p r ¼ p t ð6:2Þ
For the incident wave p i ¼ �1c1 _�� i and for the reflected wave p r ¼ ��1c1 _�� r, so equation


(6.2) becomes


�1c1 _�� i � �1c1 _�� r ¼ �2c2 _�� t


reflected


incident
transmitted


2 C21 C1 ρρ


Figure 6.7 Incident, reflected and transmitted sound waves at a plane boundary between media of
specific acoustic impedances �1c1 and � 2c 2
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or


Z1 _�� i � Z1 _�� r ¼ Z2 _�� t ð6:3Þ


Eliminating _�� t from (6.1) and (6.3) gives


_�� r


_�� i


¼ !� r


!� i


¼ � r


� i


¼ Z1 � Z2


Z1 þ Z2


Eliminatiing _�� r from (6.1) and (6.3) gives


_�� t


_�� i


¼ � t


� i


¼ 2Z1


Z1 þ Z2


Now


p r


p i


¼ � Z1 _�� r


Z1 _�� i


¼ Z2 � Z1


Z1 þ Z2


¼ � _�� r


_�� i


and


p t


p i


¼ Z2 _�� t


Z1 _�� i


¼ 2Z2


Z1 þ Z2


We see that if Z1 > Z2 the incident and reflected particle velocities are in phase, whilst the


incident and reflected acoustic pressures are out of phase. The superposition of incident and


reflected velocities which are in phase leads to a cancellation of pressure (a pressure node


in a standing wave system). If Z1 < Z2 the pressures are in phase and the velocities are out


of phase.


The transmitted particle velocity and acoustic pressure are always in phase with their


incident counterparts.


At a rigid wall, where Z2 is infinite, the velocity _�� ¼ 0 ¼ _�� i þ _�� r, which leads to a


doubling of pressure at the boundary. (See Summary on p. 546.)


Reflection and Transmission of Sound Intensity


The intensity coefficients of reflection and transmission are given by


I r


I i


¼ Z1ð _�� 2
r Þ rms


Z1ð _�� 2
i Þ rms


¼ Z1 � Z2


Z1 þ Z2


� �2


and


I t


I i


¼ Z2ð _�� 2
t Þ rms


Z1ð _�� 2
i Þ rms


¼ Z2


Z1


2Z1


Z1 þ Z2


� �2


¼ 4Z1Z2


ðZ1 þ Z2Þ2


The conservation of energy gives


I r


I i


þ I t


I i


¼ 1 or I i ¼ I t þ I r
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The great disparity between the specific acoustic impedance of air on the one hand and


water or steel on the other leads to an extreme mismatch of impedances when the


transmission of acoustic energy between these media is attempted.


There is an almost total reflection of sound wave energy at an air-water interface,


independent of the side from which the wave approaches the boundary. Only 14% of


acoustic energy can be transmitted at a steel-water interface, a limitation which has severe


implications for underwater transmission and detection devices which rely on acoustics.


(Problems 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17)


Problem 6.1
Show that in a gas at temperature T the average thermal velocity of a molecule is approximatley


equal to the velocity of sound.


Problem 6.2
The velocity of sound in air of density 1.29 kg m�3 may be taken as 330 m s�1. Show that the


acoustic pressure for the painful sound of 10 W m�2 � 6:5 � 10�4 of an atmosphere.


Problem 6.3
Show that the displacement amplitude of an air molecule at a painful sound level of 10 W m�2 at


500 Hz � 6:9 � 10�5 m.


Problem 6.4
Barely audible sound in air has an intensity of 10�10 I0. Show that the displacement amplitude of an


air molecule for sound at this level at 500 Hz is � 10�10 m; that is, about the size of the molecular


diameter.


Problem 6.5
Hi-fi equipment is played very loudly at an intensity of 100 I 0 in a small room of cross section


3 m � 3 m. Show that this audio output is about 10 W.


Problem 6.6
Two sound waves, one in water and one in air, have the same intensity. Show that the ratio of their


pressure amplitudes ( p water/p air) is about 60. When the pressure amplitudes are equal show that


the intensity ratio is � 3 � 10�2.


Problem 6.7
A spring of mass m, stiffness s and length L is stretched to a length L þ l. When longitudinal waves


propagate along the spring the equation of motion of a length dx may be written


� dx
@ 2�


@t 2
¼ @F


@x
dx


where � is the mass per unit length of the spring, � is the longitudinal displacement and F is the


restoring force. Derive the wave equation to show that the wave velocity v is given by


v 2 ¼ sðL þ lÞ=�
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Problem 6.8
In Problem 1.10 we showed that a mass M suspended by a spring of stiffness s and mass m oscillated


simple harmonically at a frequency given by


!2 ¼ s


M þ m=3


We may consider the same problem in terms of standing waves along the vertical spring with


displacement


� ¼ ðA cos kx þ B sin kxÞ sin!t


where k ¼ !=v is the wave number. The boundary conditions are that � ¼ 0 at x ¼ 0 (the top of the


spring) and


M
@ 2�


@t 2
¼ �sL


@�


@x
at x ¼ L


(the bottom of the spring). Show that these lead to the expression


kL tan kL ¼ m


M


and expand tan kL in powers of kL to show that, in the second order approximation


!2 ¼ s


M þ m=3


The value of v is given in Problem 6.7.


Problem 6.9
A solid has a Poissons ratio  ¼ 0:25. Show that the ratio of the longitudinal wave velocity to the


transverse wave velocity is
ffiffiffi
3


p
. Use the values of these velocities given in the text to derive an


appropriate value of  for the earth.


Problem 6.10
Show that when sound waves are normally incident on a plane steel water interface 86% of the


energy is reflected. If the waves are travelling in water and are normally incident on a plane water-ice


interface show that 82.3% of the energy is transmitted.


ð�c values in kg m�2 s�1Þ


water ¼ 1:43 � 106


ice ¼ 3:49 � 106


steel ¼ 3:9 � 107
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Problem 6.11
Use the boundary conditions for standing acoustic waves in a tube to confirm the following:


Particle displacement Pressure
——————————— ————————————
closed end open end closed end open end


Phase change on reflection 180 0 0 180


node antinode antinode node


Problem 6.12
Standing acoustic waves are formed in a tube of length l with (a) both ends open and (b) one end


open and the other closed. If the particle displacement


� ¼ ðA cos kx þ B sin kxÞ sin!t


and the boundary conditions are as shown in the diagrams, show that for


ðaÞ � ¼ A cos kx sin!t with � ¼ 2l=n


and for


ðbÞ � ¼ A cos kx sin!t with � ¼ 4l=ð2n þ 1Þ


Sketch the first three harmonics for each case.


(a)


l


(b)


l


∂
∂x = 0
η ∂


∂x = 0
η ∂


∂x = 0 = 0
η η


Problem 6.13
On p. 121 we discussed the problem of matching two strings of impedances Z 1 and Z 3 by the


insertion of a quarter wave element of impedance


Z 2 ¼ ðZ 1Z 3Þ 1=2


Repeat this problem for the acoustic case where the expressions for the string displacements


y i; y r; y t


now represent the appropriate acoustic pressures p i, p r and p t.


Show that the boundary condition for pressure continuity at x ¼ 0 is


A1 þ B1 ¼ A2 þ B2


and that for continuity of particle velocity is


Z 2ðA1 � B1Þ ¼ Z1ðA2 � B2Þ


Similarly, at x ¼ l, show that the boundary conditions are


A2 e�ik 2l þ B2 e ik 2l ¼ A3
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and


Z3ðA2 e�ik 2l � B2 e ik 2lÞ ¼ Z 2A3


Hence prove that the coefficient of sound transmission


Z1


Z3


A2
3


A2
1


¼ 1


when


Z 2
2 ¼ Z 1Z 3 and l ¼ �2


4


(Note that the expressions for both boundary conditions and transmission coefficient differ from


those in the case of the string.)


Problem 6.14
For sound waves of high amplitude the adiabatic bulk modulus may no longer be considered as a


constant. Use the adiabatic condition that


P


P0


¼ V0


V0ð1 þ �Þ


� � �


in deriving the wave equation to show that each part of the high amplitude wave has its


own sound velocity c 0ð1 þ sÞ ð�þ1Þ=2
, where c 2


0 ¼ �P0=� 0, � is the dilatation, s the condensation and


� the ratio of the specific heats at constant pressure and volume.


Problem 6.15
Some longitudinal waves in a plasma exhibit a combination of electrical and acoustical phenomena.


They obey a dispersion relation at temperature T of !2 ¼ !2
e þ 3aTk 2, where ! e is the constant


electron plasma frequency (see Problem 5.18) and the Boltzmann constant is written as a to avoid


confusion with the wave number k. Show that the product of the phase and group velocities is related


to the average thermal energy of an electron (found from pV ¼ RT).


Problem 6.16
It is possible to obtain the wave equation for tidal waves (long waves in shallow water) by the


method used in deriving the acoustic wave equation. In the figure a constant mass of fluid in an


element of unit width, height h and length �x moves a distance � and assumes


∂
∂x
η


η


1+


∆ x
∆ x


hh


a


Liquid su
rfa


ce
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a new height h þ � and length ð1 þ @�@xÞ�x, but retains unit width. Show that, to a first


approximation,


� ¼ �h
@�


@x


Neglecting surface tension, the force on the element face of height h þ � arises from the product of


the height and the mean hydrostatic pressure. Show, if �gh � P 0 (i.e. h � 10 m) and �� h, that


the net force on the liquid element is given by


� @F


@x
�x ¼ ��gh


@�


@x
�x


Continue the derivation using the acoustic case as a model to show that these waves are non-


dispersive with a phase velocity given by v 2 ¼ gh.


Problem 6.17
Waves near the surface of a non-viscous incompressible liquid of density � have a phase velocity


given by


v 2ðkÞ ¼ g


k
þ Tk


�


� �
tanh kh


where g is the acceleration due to gravity, T is the surface tension, k is the wave number and h is the


liquid depth. When h � � the liquid is shallow; when h � � the liquid is deep.


(a) Show that, when gravity and surface tension are equally important and h � �, the wave velocity
is a minimum at v 4 ¼ 4gT=�, and show that this occurs for a ‘critical’ wavelength
� c ¼ 2
ðT=�gÞ1=2


.


(b) The condition �� � c defines a gravity wave, and surface tension is negligible. Show that
gravity waves in a shallow liquid are non-dispersive with a velocity v ¼


ffiffiffiffiffi
gh


p
(see Problem


6.16).
(c) Show that gravity waves in a deep liquid have a phase velocity v ¼


ffiffiffiffiffiffiffiffi
g=k


p
and a group velocity


of half this value.


(d) The condition � < � c defines a ripple (dominated by surface tension). Show that short ripples in


a deep liquid have a phase velocity v ¼
ffiffiffiffiffiffiffiffiffiffi
Tk=�


p
and a group velocity of 3


2
v. (Note the anomalous


dispersion).


Summary of Important Results


Wave Velocity


c2 ¼ Bulk Modulus


�
¼ �P


�
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Specific Acoustic Impedance


Z ¼ acoustic pressure


particle velocity


Z ¼ �c (for right-going wave)


¼ ��c (for left-going wave because pressure


and particle velocity become anti-phaseÞ


Intensity ¼ 1
2
�c _�� 2


m ¼ p2
rms


�c
¼ p rms _�� rms


Reflection and Transmission Coefficients


Reflected Amplitude


Incident Amplitude


displacement


and velocity


� 
¼ Z1 � Z2


Z1 þ Z2


¼ �Reflected pressure


Incident pressure


Transmitted Amplitude


Incident Amplitude


displacement


and velocity


� 
¼ 2Z1


Z1 þ Z2


¼ Z1


Z2


� Transmitted pressure


Incident pressure


Reflected Intensity


Incident Intensity
ðenergyÞ ¼ Z1 � Z2


Z1 þ Z2


� �2


Transmitted Intensity


Incident Intensity
ðenergyÞ ¼ 4Z1Z2


ðZ1 þ Z2Þ2
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7


Waves on Transmission Lines


In the wave motion discussed so far four major points have emerged. They are


1. Individual particles in the medium oscillate about their equilibrium positions with


simple harmonic motion but do not propagate through the medium.


2. Crests and troughs and all planes of equal phase are transmitted through the medium to


give the wave motion.


3. The wave or phase velocity is governed by the product of the inertia of the medium and


its capacity to store potential energy; that is, its elasticity.


4. The impedance of the medium to this wave motion is governed by the ratio of the


inertia to the elasticity (see table on p. 546).


In this chapter we wish to investigate the wave propagation of voltages and currents and


we shall see that the same physical features are predominant. Voltage and current waves are


usually sent along a geometrical configuration of wires and cables known as transmission


lines. The physical scale or order of magnitude of these lines can vary from that of an


oscilloscope cable on a laboratory bench to the electric power distribution lines supported


on pylons over hundreds of miles or the submarine telecommunication cables lying on an


ocean bed.


Any transmission line can be simply represented by a pair of parallel wires into one end


of which power is fed by an a.c. generator. Figure 7.1a shows such a line at the instant


when the generator terminal A is positive with respect to terminal B, with current flowing


out of the terminal A and into terminal B as the generator is doing work. A half cycle later


the position is reversed and B is the positive terminal, the net result being that along each of


the two wires there will be a distribution of charge as shown, reversing in sign at each half


cycle due to the oscillatory simple harmonic motion of the charge carriers (Figure 7.1b).


These carriers move a distance equal to a fraction of a wavelength on either side of their


equilibrium positions. As the charge moves current flows, having a maximum value where


the product of charge density and velocity is greatest.
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The existence along the cable of maximum and minimum current values varying simple


harmonically in space and time describes a current wave along the cable. Associated with


these currents there are voltage waves (Figure 7.1a), and if the voltage and current at the


generator are always in phase then power is continuously fed into the transmission line and


the waves will always be carrying energy away from the generator. In a laboratory the


voltage and current waves may be shown on a Lecher Wire sysem (Figure 7.1c).


In deriving the wave equation for both voltage and current to obtain the velocity of wave


propagation we shall concentrate our attention on a short element of the line having a


length very much less than that of the waves. Over this element we may consider the


variables to change linearly to the first order and we can use differentials.


The currents which flow will generate magnetic flux lines which thread the region


between the cables, giving rise to a self inductance L0 per unit length measured in henries


per metre. Between the lines, which form a condenser, there is an electrical capacitance C0
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Figure 7.1 Power fed continuously by a generator into an infinitely long transmission line. Charge
distribution and voltage waves for (a) generator terminal positive at A and (b) a half period later,
generator terminal positive at B. Laboratory demonstration (c) of voltage maxima along a Lecher wire
system. The neon lamp glows when held near a position of Vmax
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per unit length measured in farads per metre. In the absence of any resistance in the line


these two parameters completely describe the line, which is known as ideal or lossless.


Ideal or Lossless Transmission Line


Figure 7.2 represents a short element of zero resistance of an ideal transmission line length


dx � � (the voltage or current wavelength). The self inductance of the element is L0 dx


and its capacitance if C0 dx F.


If the rate of change of voltage per unit length at constant time is @V=@x, then the


voltage difference between the ends of the element dx is @V=@x dx, which equals the


voltage drop from the self inductance �ðL0 dxÞ@I=@t.


Thus


@V


@x
dx ¼ �ðL0 dxÞ @I


@t


or


@V


@x
¼ �L0


@I


@t
ð7:1Þ


If the rate of change of current per unit length at constant time is @I=@x there is a loss of


current along the length dx of �@I=@x dx because some current has charged the capacitance


C0 dx of the line to a voltage V.


If the amount of charge is q ¼ ðC0 dxÞV ,


dI ¼ dq


dt
¼ @


@t
ðC0 dxÞV


so that


�@I


@x
dx ¼ @


@t
ðC0 dxÞV


V V +       dx


I


dx


L0dx


C0dx ∂V


∂x


I +       dx∂I


∂x


Figure 7.2 Representation of element of an ideal transmission line of inductance L 0 H per unit
length and capacitance C0 F per unit length. The element length � �, the voltage and current
wavelength
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or �@I


@x
¼ C0


@V


@t
ð7:2Þ


Since @ 2=@x@t ¼ @ 2=@t @x it follows, by taking @=@x of equation (7.1) and @=@t of


equation (7.2) that


@ 2V


@x2
¼ L0C0


@ 2V


@t 2
ð7:3Þ


a pure wave equation for the voltage with a velocity of propagation given by v 2 ¼ 1=L0C0.


Similarly @=@t of (7.1) and @=@x of (7.2) gives


@ 2I


@x2
¼ L0C0


@ 2I


@t 2
ð7:4Þ


showing that the current waves propagate with the same velocity v 2 ¼ 1=L0C0. We must


remember here, in checking dimensions, that L0 and C0 are defined per unit length.


So far then, the oscillatory motion of the charge carriers (our particles in a medium) has


led to the propagation of voltage and current waves with a velocity governed by the product


of the magnetic inertia or inductance of the medium and its capactiy to store potential


energy.


Coaxial Cables


Many transmission lines are made in the form of coaxial cables, e.g. a cylinder of dielectric


material such as polythene having one conductor along its axis and the other surrounding


its outer surface. This configuration has an inductance per unit length of


L0 ¼ �


2�
loge


r2


r1


H


where r1 and r2 are the radii of the inner and outer conductors respectively and � is the


magnetic permeability of the dielectric (henries per metre). Its capacitance per unit length


C0 ¼ 2�"


loge r2=r1


F


where " is the permittivity of the dielectric (farads per metre) so that v 2 ¼ 1=L0C0 ¼ 1=�".
The velocity of the voltage and current waves along such a cable is wholly determined


by the properties of the dielectric medium. We shall see in the next chapter on


electromagnetic waves that � and " represent the inertial and elastic properties of any


medium in which such waves are propagating; the velocity of these waves will be given by


v 2 ¼ 1=�". In free space these parameters have the values


�0 ¼ 4�� 10�7 H m�1


"0 ¼ ð36�� 109Þ�1
F m�1


and v 2 becomes c2 ¼ ð�0"0Þ�1
where c is the velocity of light, equal to 3 � 108 m s�1.
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As we shall see in the next section the ratio of the voltage to the current in the waves


travelling along the cable is


V


I
¼ Z0 ¼


ffiffiffiffiffiffi
L0


C0


r


where Z0 defines the impedance seen by the waves moving down an infinitely long cable. It


is called the Characteristic Impedance.


We write " ¼ "r "0 where "r is the relative permittivity (dielectric constant) of a material


and � ¼ �r�0, where �r is the relative permeability. Polythene, which commonly fills the


space between r1 and r2, has "r � 10 and �r � 1.


Hence


Z0 ¼
ffiffiffiffiffiffi
L0


C0


r
¼ 1


2�


ffiffiffi
�


"


r
loge


r2


r1


¼ 1


2�


1ffiffiffi
"


p
r


loge


r2


r1


ffiffiffiffiffi
�0


"0


r


where


ffiffiffiffiffi
�0


"0


r
¼ 376:6 �


Typically, the ratio r2=r1 varies between 2 and 102 and for a laboratory cable using


polythene Z0 � 50�75 � with a signal speed � c=3 where c is the speed of light.


Coaxial cables can be made to a very high degree of precision and the time for an


electrical signal to travel a given length can be accurately calculated because the velocity is


known.


Such a cable can be used as a ‘delay line’ in order to separate the arrival of signals at a


given point by very small intervals of time.


Characteristic Impedance of a Transmission Line


The solutions to equations (7.3) and (7.4) are, of course,


Vþ ¼ V0þ sin
2�


�
ðvt � xÞ


and


Iþ ¼ I0þ sin
2�


�
ðvt � xÞ


where V0 and I0 are the maximum values and where the subscript + refers to a wave


moving in the positive x-direction. Equation (7.1), @V=@x ¼ �L0 @I=@t, therefore gives


�V 0
þ ¼ �vL0I 0þ, where the superscript refers to differentiation with respect to the bracket


ðvt � xÞ.
Integration of this equation gives


Vþ ¼ vL0Iþ
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where the constant of integration has no significance because we are considering only


oscillatory values of voltage and current whilst the constant will change merely the d.c.


level.


The ratio


Vþ
Iþ


¼ vL0 ¼
ffiffiffiffiffiffi
L0


C0


r
�


and the value of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0


p
, written as Z0, is a constant for a transmission line of given


properties and is called the characteristic impedance. Note that it is a pure resistance


(no dimensions of length are involved) and it is the impedance seen by the wave


system propagating along an infinitely long line, just as an acoustic wave experiences a


specific acoustic impedance �c. The physical correspondence between �c and


L0v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0


p
¼ Z0 is immediately evident.


The value of Z0 for the coaxial cable considered earlier can be shown to be


Z0 ¼ 1


2�


ffiffiffi
�


"


r
loge


r2


r1


Electromagnetic waves in free space experience an impedance Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�0="0


p
¼ 376:6 �.


So far we have considered waves travelling only in the x-direction. Waves which travel


in the negative x-direction will be represented (from solving the wave equation) by


V� ¼ V0� sin
2�


�
ðvt þ xÞ


and


I� ¼ I0� sin
2�


�
ðvt þ xÞ


where the negative subscript denotes the negative x-direction of propagation.


Equation (7.1) then yields the results that


V�
I�


¼ �vL0 ¼ �Z0


so that, in common with the specific acoustic impedance, a negative sign is introduced into


the ratio when the waves are travelling in the negative x-direction.


When waves are travelling in both directions along the transmission line the total voltage


and current at any point will be given by


V ¼ Vþ þ V�


and


I ¼ Iþ þ I�


When a transmission line has waves only in the positive direction the voltage and current


waves are always in phase, energy is propagated and power is being fed into the line by the


generator at all times. This situation is destroyed when waves travel in both directions;
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waves in the negative x-direction are produced by reflection at a boundary when a line is


terminated or mismatched; we shall now consider such reflections.


(Problems 7.1, 7.2)


Reflections from the End of a Transmission Line


Suppose that a transmission line of characteristic impedance Z0 has a finite length and that


the end opposite that of the generator is terminated by a load of impedance ZL as shown in


Figure 7.3.


A wave travelling to the right ðVþ; IþÞ may be reflected to produce a wave ðV�; I�Þ
The boundary conditions at ZL must be VþþV�¼VL, where VL is the voltage across the


load and IþþI�¼ IL. In addition Vþ=Iþ¼Z0, V�=I� ¼ �Z0 and VL=IL ¼ ZL. It is easily


shown that these equations yield


V�
Vþ


¼ ZL � Z0


ZL þ Z0


(the voltage amplitude reflection coefficient),


I�
Iþ


¼ Z0 � ZL


ZL þ Z0


(the current amplitude reflection coefficient),


VL


Vþ
¼ 2ZL


ZL þ Z0


and


IL


Iþ
¼ 2Z0


ZL þ Z0


in complete correspondence with the reflection and transmission coefficients we have met


so far. (See Summary on p. 546.)


VL


Z0


Z0


V++V− = VL


I++I− = IL
ZL V+


I+


−V−


I−
= =


(V+ , I+ 
)


(V− , I− 
)


Figure 7.3 Transmission line terminated by impedance Z L to produce reflected waves unless
Z L ¼ Z0, the characteristic impedance
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We see that if the line is terminated by a load ZL ¼ Z0, its characteristic impedance, the


line is matched, all the energy propagating down the line is absorbed and there is no


reflected wave. When ZL ¼ Z0, therefore, the wave in the positive direction continues to


behave as though the transmission line were infinitely long.


Short Circuited Transmission Line ðZL ¼ 0Þ
If the ends of the transmission line are short circuited (Figure 7.4), ZL ¼ 0, and we have


VL ¼ Vþ þ V� ¼ 0


so that Vþ ¼ �V�, and there is total reflection with a phase change of �, But this is the


condition, as we saw in an earlier chapter, for the existence of standing waves; we shall see


that such waves exist on the transmission line.


At any position x on the line we may express the two voltage waves by


Vþ ¼ Z0Iþ ¼ V0þ eið!t�kxÞ


and


V� ¼ �Z0I� ¼ V0� eið!tþkxÞ


where, with total reflection and � phase change, V0þ ¼ �V0�. The total voltage at x is


Vx ¼ ðVþ þ V�Þ ¼ V0þðe�ikx � eikxÞ e i!t ¼ ð�iÞ2V0þ sin kx ei!t


and the total current at x is


Ix ¼ ðIþ þ I�Þ ¼
V0þ
Z0


ðe�ikx þ eikxÞ ei!t ¼ 2V0þ
Z0


cos kx ei!t


We see then that at any point x along the line the voltage Vx varies as sin kx and the


current Ix varies as cos kx, so that voltage and current are 90� out of phase in space. In


addition the � i factor in the voltage expression shows that the voltage lags the current 90�


in time, so that if we take the voltage to vary with cos !t from the ei!t term, then the current


Current


Voltage


ZL= 0


Figure 7.4 Short circuited transmission line of length (2n þ 1Þ�=4 produces a standing wave with
a current maximum and zero voltage at end of line
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will vary with � sin !t. If we take the time variation of voltage to be as sin !t the current


will change with cos !t.


Voltage and current at all points are 90� out of phase in space and time, and the power


factor cos� ¼ cos 90� ¼ 0, so that no power is consumed. A standing wave system exists


with equal energy propagated in each direction and the total energy propagation equal to


zero. Nodes of voltage and current are spaced along the transmission line as shown in


Figure 7.4, with I always a maximum where V ¼ 0 and vice versa.


If the current I varies with cos !t it will be at a maximum when V ¼ 0; when V is a


maximum the current is zero. The energy of the system is therefore completely exchanged


each quarter cycle between the magnetic inertial energy 1
2


L0I 2 and the electric potential


energy 1
2


C0V 2.


(Problems 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11)


The Transmission Line as a Filter


The transmission line is a continuous network of impedances in series and parallel


combination. The unit section is shown in Figure 7.5(a) and the continuous network in


Figure 7.5(b).


Z1


Z2


(a)


Z1 Z1 Z1


Z2 Z2 Z2


(b)


Figure 7.5 (a) The elementary unit of a transmission line. (b) A transmission line formed by a
series of such units
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If we add an infinite series of such sections a wave travelling down the line will meet its


characteristic impedance Z0. Figure 7.6 shows that, adding an extra section to the beginning


of the line does not change Z0. The impedance in Figure 7.6 is


Z ¼ Z1 þ
1


Z2


þ 1


Z0


� ��1


or


Z ¼ Z1 þ
Z2Z0


Z2 þ Z0


¼ Z0


so the characteristic impedance is


Z0 ¼ Z1


2
þ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2


1


4
þ Z1Z2


r


Note that Z1=2 is half the value of the first impedance in the line so if we measure the


impedance from a point half way along this impedance we have


Z0 ¼ Z2
1


4
þ Z1Z2


� �1=2


We shall, however, use the larger value of Z0 in what follows.


In Figure 7.7 we now consider the currents and voltages at the far end of the transmission


line. Any Vn since it is across Z0 is given by Vn ¼ InZ0


Moreover


Vn � Vnþ1 ¼ In Z1 ¼ Vn


Z1


Z0


Z0Z0Z2


Z1a


b


Figure 7.6 A infinite series of elemenetary units presents a characteristic impedance Z0 to a
wave travelling down the transmission line. Adding an extra unit at the input terminal leaves Z0


unchanged
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So


Vnþ1


Vn


¼ 1 � Z1


Z0


¼ Z0 � Z1


Z0


a result which is the same for all sections of the line.


We define a propagation factor


� ¼ Vnþ1


Vn


¼ Z0 � Z1


Z0


which, with


Z0 ¼ Z1


2
þ Z2


1


4
þ Z1Z2


� �1=2


gives


� ¼


ffiffiffi
Z


p
0 �


Z1


2


� �
ffiffiffi
Z


p
0 þ


Z1


2


� �


¼1 þ Z1


2Z2


� 1 þ Z1


2Z2


� �2


�1


" #1=2


In all practical cases Z1=Z2 is real since


1. there is either negligible resistance so that Z1 and Z2 are imaginary


or


2. the impedances are purely resistive.


Vn + 1Vn Z0Z2


Z1
In In + 1


Figure 7.7 The propagation constant � ¼ Vnþ1=Vn ¼ Z0 � 1=Z0 for all sections of the transmission
line
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So, given (1) or (2) we see that if


(a) 1 þ Z1


2Z2


� �2


¼ 1 þ Z1


Z2


1 þ Z1


4Z2


� �� 	
� 1 then � is real; and


(b) 1 þ Z1


2Z2


� �2


< 1 then � is complex:


For � real we have Z1=4Z2 � 0 or  �1.


If Z1=4Z2 � 0, then 0 < � < 1, the currents in successive sections decrease


progressively and since a is real and positive there is no phase change from one section


to another.


If Z1=4Z2  �1, then �  0, and there is again a progressive decrease in current


amplitudes along the network but here a is negative and there is a � phase change for each


successive section.


When a is complex we have


�1 <
Z1


4Z2


< 0


and


� ¼ 1 þ Z1


2Z2


� i 1 � 1 þ Z1


2Z2


� �2
" #1=2


Note that j�j ¼ 1 so we can write


� ¼ cos� � i sin � ¼ e�i�


where


cos � ¼ 1 þ Z1


2Z2


The current amplitude remains constant along the transmission line but the phase is


retarded by � with each section. If Z1 and Z2 are purely resistive � is fixed and the


attenuation is constant for all voltage inputs.


If Z1 is an inductance with Z2 a capacitance (or vice versa) the division between � real


and � complex occurs at certain frequencies governed by their relative magnitudes.


If Z1 ¼ i!L and Z2 ¼ 1=i!C for an input voltage V ¼ V0ei!t then j�j ¼ 1 when


0  !2LC  4.


So the line behaves as a low pass filter with a cut-off frequency !c ¼ 2=
ffiffiffi
L


p
C Above this


frequency there is a progressive decrease in amplitude with a phase change of � in each


section, Figure 7.8a.


If the positions of Z1 and Z2 are now interchanged so that Z1 ¼ 1=i!C is now a


capacitance and Z2 is now an inductance with Z2 ¼ i!L the transmisson line becomes a
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high pass filter with zero attenuation for 0  1=!2LC  4 that is for all frequencies above


!C ¼ ð1=2
ffiffiffi
L


p
CÞ Figure 7.8b.


(Problem 7.12)


Effect of Resistance in a Transmission Line


The discussion so far has concentrated on a transmission line having only inductance and


capacitance, i.e. wattless components which consume no power. In practice, of course, no


IαI


I


w c =  
LC


2


(a)


IαI


I


w c =  
LC


1
2


(b)


Figure 7.8 (a) When Z1 ¼ i!L and Z2 ¼ ði!LÞ�1 the transmission line acts as a low-pass filter. (b)
Reversing the positions of Z1 and Z2 changes the transmission line into a high-pass filter
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such line exists: there is always some resistance in the wires which will be responsible for


energy losses. We shall take this resistance into account by supposing that the transmission


line has a series resistance R0� per unit length and a short circuiting or shunting resistance


between the wires, which we express as a shunt conductance (inverse of resistance) written


as G0, where G0 has the dimensions of siemens per metre. Our model of the short element


of length dx of the transmission line now appears in Figure 7.9, with a resistance R0 dx in


series with L0 dx and the conductance G0 dx shunting the capacitance C0 dx. Current will


now leak across the transmission line because the dielectric is not perfect. We have seen


that the time-dependence of the voltage and current variations along a transmission line


may be written


V ¼ V0 e i!t and I ¼ I0 e i!t


so that


L0


@I


@t
¼ i!L0I and C0


@V


@t
¼ i!C0V


The voltage and current changes across the line element length dx are now given by


@V


@x
¼ �L0


@I


@t
� R0I ¼ �ðR0 þ i!L0ÞI ð7:1aÞ


@I


@x
¼ �C0


@V


@t
� G0V ¼ �ðG0 þ i!C0ÞV ð7:2aÞ


since (G0 dx)V is the current shunted across the condenser. Inserting @=@x of equation


(7.1a) into equation (7.2a) gives


@ 2V


@x2
¼ �ðR0 þ i!L0Þ


@I


@x
¼ ðR0 þ i!L0ÞðG0 þ i!C0ÞV ¼ � 2V


where � 2 ¼ ðR0 þ i!L0ÞðG0 þ i!C0Þ, so that � is a complex quantity which may be


written


� ¼ �þ ik


V


I L0dx R0dx


C0dx G0dx ∂V


∂x
dxV +


∂I


∂x
dxI +


Figure 7.9 Real transmission line element includes a series resistance R0 � per unit length and a
shunt conductance G0 S per unit length
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Inserting @=@x of equation (7.2a) into equation (7.1a) gives


@ 2I


@x2
¼ �ðG0 þ i!C0Þ


@V


@x
¼ ðR0 þ i!L0ÞðG0 þ i!C0ÞI ¼ � 2I


an equation similar to that for V.


The equation


@ 2V


@x2
� � 2V ¼ 0 ð7:5Þ


has solutions for the x-dependence of V of the form


V ¼ A e��x or V ¼ B eþ�x


where A and B are constants.


We know already that the time-dependence of V is of the form ei!t, so that the complete


solution for V may be written


V ¼ ðA e��x þ B e�xÞ ei!t


or, since � ¼ �þ ik,


V ¼ ðA e��x e�ikx þ B e�x eþikxÞ ei!t


¼ A e��x eið!t�kxÞ þ B e�x e ið!tþkxÞ


The behaviour of V is shown in Figure 7.10—a wave travelling to the right with an


amplitude decaying exponentially with distance because of the term e��x and a wave


travelling to the left with an amplitude decaying exponentially with distance because of the


term e�x.


In the expression � ¼ �þ ik, � is called the propagation constant, � is called the


attenuation or absorption coefficient and k is the wave number.


Ae
i(ωt − kx)


Be
i(ωt + kx)


reflected
wave


incident
wave


x


eαxe−αx


Figure 7.10 Voltage and current waves in both directions along a transmission line with resistance.
The effect of the dissipation term is shown by the exponentially decaying wave in each direction
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The behaviour of the current wave I is exactly similar and since power is the product VI,


the power loss with distance varies as ðe��xÞ2
; that is, as e�2�x.


We would expect this behaviour from our discussion of damped simple harmonic


oscillations. When the transmission line properties are purely inductive (inertial) and


capacitative (elastic), a pure wave equation with a sine or cosine solution will follow. The


introduction of a resistive or loss element produces an exponential decay with distance


along the transmission line in exactly the same way as an oscillator is damped with time.


Such a loss mechanism, resistive, viscous, frictional or diffusive, will always result in


energy loss from the propagating wave. These are all examples of random collision


processes which operate in only one direction in the sense that they are thermodynamically


irreversible. At the end of this chapter we shall discuss their effects in more detail.


Characteristic Impedance of a Transmission Line with
Resistance


In a lossless line we saw that the ratio Vþ=Iþ ¼ Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0


p
¼ Z0 �, a purely resistive


term. In what way does the introduction of the resistance into the line affect the


characteristic impedance?


The solution to the equation @ 2I=@x2 ¼ � 2I may be written (for the x-dependence of I) as


I ¼ ðA 0 e��x þ B 0 e�xÞ


so that equation (7.2a)


@I


@x
¼ �ðG0 þ i!C0ÞV


gives


��ðA 0 e��x � B 0 e�xÞ ¼ �ðG0 þ i!C0ÞV
or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


ðR0 þ i!L0ÞðG0 þ i!C0Þ
p


G0 þ i!C0


ðA 0 e��x � B 0 e�xÞ ¼ V ¼ Vþ þ V�


But, except for the ei!t term,


A 0 e��x ¼ Iþ


the current wave in the positive x-direction, so that


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0


G0 þ i!C0


r
Iþ ¼ Vþ


or


Vþ
Iþ


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0


G0 þ i!C0


r
¼ Z 0


0
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for a transmission line with resistance. Similarly B 0 e�x ¼ I� and


V�
I�


¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0


G0 þ i!C0


r
¼ �Z 0


0


The presence of the resistance term in the complex characteristic impedance means that


power will be lost through Joule dissipation and that energy will be absorbed from the wave


system.


We shall discuss this aspect in some detail in the next chapter on electromagnetic waves,


but for the moment we shall examine absorption from a different (although equivalent)


viewpoint.


(Problems 7.13, 7.14)


The Diffusion Equation and Energy Absorption in Waves


On p. 23 of Chapter 1 we discussed quite briefly the effect of random processes. We shall


now look at this in more detail. The wave equation


@ 2�


@x2
¼ 1


c2


@ 2�


@t 2


is only one of a family of equations which have a double differential with respect to space


on the left hand side.


In three dimensions the left hand side would be of the form


@ 2�


@x2
þ @ 2�


@y2
þ @ 2�


@z2


which, in vector language, is called the divergence of the gradient or div grad and is written


r2�.


Five members of this family of equations may be written (in one dimension) as


1. Laplace’s Equation


@ 2�


@x2
¼ 0 ðfor �ðxÞ onlyÞ


2. Poisson’s Equation


@ 2�


@x2
¼ constant ðfor �ðxÞ onlyÞ


3. Helmholtz Equation


@ 2�


@x2
¼ constant � �
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4. Diffusion Equation


@ 2�


@x2
¼ þve constant � @�


@t


5. Wave Equation


@ 2�


@x2
¼ þve constant � @ 2�


@t 2


Laplace’s and Poisson’s equations occur very often in electrostatic field theory and are


used to find the values of the electric field and potential at any point. We have already met


the Helmholtz equation in this chapter as equation (7.5), where the constant was positive


(written � 2) and we have seen its behaviour when the constant is negative, for it is then


equivalent to the equation for standing waves (p. 124). The constant in the wave equation is


of course 1/c2 where c is the wave velocity. Where the wave equation has an ‘acceleration’


or @ 2�=@t 2 term on the right hand side, the diffusion equation has a ‘velocity’ or @�=@t term.


All equations, however, have the same term @ 2�=@x2 on the left hand side, and we must


ask: ‘What is its physical significance?’


We know that the values of the scalar � will depend upon the point in space at which it is


measured. Suppose we choose some point at which � has the value �0 and surround this


point by a small cube of side l, over the volume of which � may take other values. If the


average value of � over the small cube is written ���, then the difference between the average
��� and the value at the centre of the cube �0 is given by


���� �0 ¼ constant � @ 2�


@x2
þ @ 2�


@y2
þ @ 2�


@z2


� �
0


This statement is proved in the appendix at the end of this chapter and is readily understood


by those familiar with triple integration. The left hand side of any of these equations


therefore measures the value


�� �0


In Laplace’s equation the difference is zero, so that � has a constant value over the


volume considered. Poisson’s equation tells us that the difference is constant and


Helmholtz equation states that the value of � at any point in the volume is proportional to


this difference. The first two equations are ‘steady state’, i.e. they do not vary with time.


The Helmholtz equation states that if the constant is positive the behaviour of � with


space grows or decays exponentially, e.g. � 2 is positive in equation (7.5), but if the constant


is negative, � will vary sinusoidally or cosinusoidally with space as the displacement varies


with time in simple harmonic motion and the equation becomes the time independent wave


equation for standing waves. This equation says nothing about the time behaviour of �,


which will depend only upon the function � itself.


Both the diffusion and wave equations are time-derivative dependent. The diffusion


equation states that the ‘velocity’ or change of � with time at a point in the volume is


proportional to the difference ���� �0, whereas the wave equation states that the


‘acceleration’ @ 2�=@t 2 depends on this difference.
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The wave equation recalls the simple harmonic oscillator, where the difference from the


centre ðx ¼ 0Þ was a measure of the force or acceleration term; both the oscillator and the


wave equation have time varying sine and cosine solutions with maximum velocity @�=@t


at the zero displacement from equilibrium; that is, where the difference ���� �0 ¼ 0.


The diffusion equation, however, describes a different kind of behaviour. It describes a


non-equilibrium situation which is moving towards equilibrium at a rate governed by its


distance from equilibrium, so that it reaches equilibrium in a time which is theoretically


infinite. Readers will have already met this situation in Newton’s Law of Cooling, where a


hot body at temperatue T0 stands in a room of lower temperature �TT . The rate at which the


body cools, i.e. the value of @T=@t, depends on �TT � T0; a cooling graph of this experiment


is given in Figure 7.11. The greatest rate of cooling occurs when the temperature difference


is greatest and the process slows down as the system approaches equilibrium. Here, of


course, �TT � T0 and @T=@t are both negative.


All non-equilibrium processes of this kind are unidirectional in the sense that they are


thermodynamically irreversible. They involve the transport of mass in diffusion, the


transport of momentum in friction or viscosity and the transport of energy in conductivity.


All such processes involve the loss of useful energy and the generation of entropy.


They are all processes which are governed by random collisions, and we found in the


first chapter, where we added vectors of constant length and random phase, that the average


distance travelled by particles involved in these processes was proportional, not to the time,


but to the square root of the time.


Rewriting the diffusion equation as


@ 2�


@x2
¼ 1


d


@�


@t
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Figure 7.11 Newton’s cooling curve shows that the rate of cooling of a hot body @T=@t depends on
the temperature difference between the body and its surrounding, this difference being directly
measured by @ 2T=@x 2
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we see that the dimensions of the constant d, called the diffusivity, are given by


�


length2
¼ 1


d


�


time


so that d has the dimensions of length2=time. The interpretation of this as the square of


a characteristic length varying with the square root of time has already been made in


Chapter 1.


In a viscous process d is given by �=�, where � is the coefficient of viscosity and � is the


density. In thermal conductivity d ¼ K=�Cp, where K is the coefficient of thermal


conductivity, � is the density and Cp is the specific heat at constant pressure.


A magnetic field which is non-uniformly distributed in a conductor has a diffusivity


d ¼ ð��Þ�1
, where � is the permeability and � is the conductivity.


Brownian motion is one of the best known examples of random collision processes. The


distance x travelled in time t by a particle suffering multiple random collisions is given by


Einstein’s diffusivity relation


d ¼ x2


t
¼ 2RT


6��N


The gas law, pV ¼ RT , gives RT as the energy of a mole of such particles at temperature


T; a mole contains N particles, where N is Avogadro’s number and RT=N ¼ kT , the average


energy of the individual particles, where k is Boltzmann’s constant.


The process is governed, therefore, by the ratio of the energy of the particles to the


coefficient of viscosity, which measures the frictional force. The higher the temperature,


the greater is the energy, the less the effect of the frictional force and the greater the


average distance travelled.


Wave Equation with Diffusion Effects


In natural systems we can rarely find pure waves which propagate free from the energy-loss


mechanisms we have been discussing, but if these losses are not too serious we can


describe the total propagation in space and time by a combination of the wave and diffusion


equations.


If we try to solve the combined equation


@ 2�


@x2
¼ 1


c2


@ 2�


@t 2
þ 1


d


@�


@t


we shall not obtain a pure sine or cosine solution.


Let us try the solution


� ¼ �m eið!t��xÞ


where �m is the maximum amplitude. This gives


i2� 2 ¼ i 2 !
2


c2
þ i


!


d
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or


� 2 ¼ !2


c2
� i


!


d


giving a complex value for �. But !2=c2 ¼ k 2, where k is the wave number, and if we put


� ¼ k � i� we obtain


� 2 ¼ k 2 � 2ik�� �2 � k 2 � i 2 k� if �� k


The solution for � then becomes


� ¼ �m eið!t��xÞ ¼ �m e��x eið!t�kxÞ


i.e. a sine or cosine oscillation of maximum amplitude �m which decays exponentially with


distance. The physical significance of the condition �� k ¼ 2�=� is that many


wavelengths � are contained in the distance 1=� before the amplitude decays to �m e�1


at x ¼ 1=�. Diffusion mechanisms will cause attenuation or energy loss from the wave; the


energy in a wave is proportional to the square of its amplitude and therefore decays as


e�2�x.


(Problems 7.15, 7.16, 7.17)


Appendix


Physical interpretation of


@ 2�


@x2
þ @ 2�


@y2
þ @ 2�


@ 2
2


� r2�


At a certain point O of the scalar field, � ¼ �0. Constructing a cube around the point O


having sides of length l gives for the average value over the cube volume


���l3 ¼
ðððþl=2


�l=2


� dx dy dz


Expanding � about the point O by a Taylor series gives


� ¼ �0 þ
@�


@x


� �
0


x þ @�


@y


� �
0


y þ @�


@z


� �
0


z


þ 1


2


@ 2�


@x2


� �
0


x2 þ @ 2�


@y2


� �
0


y2 þ @ 2�


@z2


� �
0


z2


� 	


þ @ 2�


@x@y


� �
0


xy þ @ 2�


@y@z


� �
0


yz þ @ 2�


@z@x


� �
0


zx þ � � �


Integrating from �l=2 to þl=2 removes all the functions of the form


@�


@x


� �
0


x and
@ 2�


@x@y


� �
0


xy
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whose integrals are zero, leaving, since


ðððþl=2


�l=2


x2 dx dy dz ¼ l5


12


���l3 ¼ �0l3 þ l5


24


@ 2�


@x2
þ @ 2�


@y2
þ @ 2�


@z2


� �
0


i.e.


���� �0 ¼ l2


24
ðr2�Þ0


where l is a constant.


Problem 7.1
The figure shows the mesh representation of a transmission line of inductance L 0 per unit length and


capacitance C0 per unit length. Use equations of the form


Vr
 


−
 


1


qr−1 qr+1


Vr
 


+
 


1


Ir−1


Vr


qr
Ir


C0dxC0dx


L0dx L0dx


C0dx


I r�1 � I r ¼
d


dt
q r ¼ C 0 dx


d


dt
V r


and


L0 dx
d


dt
Ir ¼ Vr � V rþ1


together with the method of the final section of Chapter 4 to show that the voltage and current wave


equations are


@ 2V


@x2
¼ L 0C 0


@ 2V


@t 2


and


@ 2I


@x2
¼ L0C 0


@ 2I


@t 2
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Problem 7.2
Show that the characteristic impedance for a pair of Lecher wires of radius r and separation d in a


medium of permeability � and permittivity " is given by


Z0 ¼ 1


�


ffiffiffi
�


"


r
log e


d


r


Problem 7.3
In a short-circuited lossless transmission line integrate the magnetic (inductive) energy 1


2
L 0I 2 and


the electric (potential) energy 1
2


C 0V 2 over the last quarter wavelength (0 to ��=4) to show that they


are equal.


Problem 7.4
Show, in Problem 7.3, that the sum of the instantaneous values of the two energies over the last


quarter wavelength is equal to the maximum value of either.


Problem 7.5
Show that the impedance of a real transmission line seen from a position x on the line is given by


Z x ¼ Z 0


A e��x � B eþ�x


A e��x þ B eþ�x


where � is the propagation constant and A and B are the current amplitudes at x ¼ 0 of the waves


travelling in the positive and negative x-directions respectively. If the line has a length l and is


terminated by a load ZL, show that


Z L ¼ Z0


A e��l � B e �l


A e��l þ B e �l


Problem 7.6
Show that the input impedance of the line of Problem 7.5; that is, the impedance of the line at x ¼ 0,


is given by


Zi ¼ Z 0


Z 0 sinh �l þ Z L cosh �l


Z 0 cosh �l þ Z L sinh �l


� �


ðNote : 2 cosh �l ¼ e�l þ e��l


2 sinh �l ¼ e�l � e��lÞ


Problem 7.7
If the transmission line of Problem 7.6 is short-circuited, show that its input impedance is given by


Z sc ¼ Z0 tanh �l


and when it is open-circuited the input impedance is


Z0c ¼ Z 0 coth �l


By taking the product of these quantities, suggest a method for measuring the characteristic
impedance of the line.
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Problem 7.8
Show that the input impedance of a short-circuited loss-free line of lenght l is given by


Z i ¼ i


ffiffiffiffiffiffi
L 0


C 0


r
tan


2�l


�


and by sketching the variation of the ratio Zi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L 0=C0


p
with l, show that for l just greater than


ð2n þ 1Þ�=4, Zi is capacitative, and for l just greater than n�=2 it is inductive. (This provides a


positive or negative reactance to match another line.)


Problem 7.9
Show that a line of characteristic impedance Z 0 may be matched to a load Z L by a loss-free quarter


wavelength line of characteristic impedance Z m if Z 2
m ¼ Z 0Z L.


(Hint—calculate the input impedance at the Z 0Z m junction.)


Problem 7.10
Show that a short-circuited quarter wavelength loss-free line has an infinite impedance and that if it


is bridged across another transmission line it will not affect the fundamental wavelength but will


short-circuit any undesirable second harmonic.


Problem 7.11
Show that a loss-free line of characteristic impedance Z 0 and length n�=2 may be used to couple two


high frequency circuits without affecting other impedances.


Problem 7.12
A transmission line has Z1 ¼ i!L and Z2 ¼ ði!CÞ�1


. If, for a range of frequencies !, the phase shift


per section � is very small show that � ¼ k the wave number and that the phase velocity is


independent of the frequency.


Problem 7.13
In a transmission line with losses where R0=!L 0 and G 0=!C 0 are both small quantities expand the


expression for the propagation constant


� ¼ ½ðR0 þ i!L 0ÞðG0 þ i!C 0Þ� 1=2


to show that the attenuation constant


� ¼ R0


2


ffiffiffiffiffiffi
C0


L 0


r
þ G 0


2


ffiffiffiffiffiffi
L 0


C0


r


and the wave number


k ¼ !
ffiffiffiffiffiffiffiffiffiffiffi
L 0C 0


p
¼ !


v


Show that for G 0 ¼ 0 the Q value of such a line is given by k=2�.


194 Waves on Transmission Lines







Problem 7.14
Expand the expression for the characteristic impedance of the transmission line of Problem 7.13 in


terms of the characteristic impedance of a lossless line to show that if


R0


L0


¼ G0


C 0


the impedance remains real because the phase effects introduced by the series and shunt losses are


equal but opposite.


Problem 7.15
The wave description of an electron of total energy E in a potential well of depth V over the region


0 < x < l is given by Schrödinger’s time independent wave equation


@ 2 


@x2
þ 8�2m


h2
ðE � VÞ ¼ 0


where m is the electron mass and h is Planck’s constant. (Note that V ¼ 0 within the well.)


l


V E


e
xγ


e x−γ


Show that for E > V (inside the potential well) the solution for  is a standing wave solution but for


E < V (outside the region 0 < x < l) the x dependence of  is e��x, where


� ¼ 2�


h


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV � EÞ


p
Problem 7.16
A localized magnetic field H in an electrically conducting medium of permeability � and


conductivity � will diffuse through the medium in the x-direction at a rate given by


@H


@t
¼ 1


��


@ 2H


@x2


Show that the time of decay of the field is given approximately by L 2��, where L is the extent of
the medium, and show that for a copper sphere of radius 1 m this time is less than 100s.


� ðcopperÞ ¼ 1 � 26 � 10�6 H m�1


� ðcopperÞ ¼ 5 � 8 � 107 S m�1


(If the earth’s core were molten iron its field would freely decay in approximately 15�10 3 years. In


the sun the local field would take 1010 years to decay. When � is very high the local field will change


only by being carried away by the movement of the medium—such a field is said to be ‘frozen’ into


the medium—the field lines are stretched and exert a restoring force against the motion.)
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Problem 7.17
A point x0 at the centre of a large slab of material of thermal coductivity k, specific heat C and


density � has an infinitely high temperature T at a time t 0. If the heat diffuses through the medium at


a rate given by


@T


@t
¼ k


�C


@ 2T


@x2
¼ d


@ 2T


@x2


show that the heat flow along the x-aixs is given by


f ð�; tÞ ¼ rffiffiffi
�


p e�ðr�Þ 2


;


where


� ¼ ðx � x 0Þ and r ¼ 1


2
ffiffiffiffi
dt


p


by inserting this solution in the differential equation. The solution is a Guassian function; its


behaviour with x and t in this problem is shown in Fig. 10.12. At ðx0, t 0) the function is the Dirac


delta function. The Guassian curves decay in height and widen with time as the heat spreads through


the medium, the total heat, i.e. the area under the Gaussian curve, remaining constant.


Summary of Important Results
Lossless Transmission Line
Inductance per unit length¼ L0 or �
Capacitance per unit length¼C0 or "
Wave Equation


@ 2V


@x2
¼ 1


v 2


@ 2V


@t 2
ðvoltageÞ


@ 2I


@x2
¼ 1


v 2


@ 2I


@t 2
ðcurrentÞ


Phase Velocity


v 2 ¼ 1


L0C0


or
1


�"


Characteristic Impedance


Z0 ¼ V


I
¼


ffiffiffiffiffiffi
L0


C0


r
or


ffiffiffi
�


"


r
ðfor right-going waveÞ


ð�Z0 for left-going waveÞ


196 Waves on Transmission Lines







Transmission Line with Losses


Resistane R0 per unit length


Shunt conductance G0 per unit length


Wave equation takes form


ei!t @ 2V


@x2
� � 2V


� �
¼ 0 ðsame for IÞ


where � ¼ �þ ik is the propagation constant


� ¼ attenuation coefficient


k ¼ wave number


giving


V ¼ A e��x eið!t�kxÞ þ B e�x eið!tþkxÞ


Characteristic Impedance


Z 0
0 ¼ V


I
¼


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0


G0 þ i!C0


r
ðright-going waveÞ


ð�Z 0
0 for left-going waveÞ


Wave Attenuation


Energy absorption in a medium described by diffusion equation


@ 2�


@x2
¼ 1


d


@�


@t


Add to wave equation to account for attenuation giving


@ 2�


@x2
¼ 1


c2


@ 2�


@t 2
þ 1


d


@�


@t


with exponentially decaying solution


� ¼ �m e��x eið!t�kxÞ
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8


Electromagnetic Waves


Earlier chapters have shown that the velocity of waves through a medium is determined by


the inertia and the elasticity of the medium. These two properties are capable of storing


wave energy in the medium, and in the absence of energy dissipation they also determine


the impedance presented by the medium to the waves. In addition, when there is no loss


mechanism a pure wave equation with a sine or cosine solution will always be obtained, but


this equation will be modified by any resistive or loss term to give an oscillatory solution


which decays with time or distance.


These physical processes describe exactly the propagation of electromagnetic waves


through a medium. The magnetic inertia of the medium, as in the case of the transmission


line, is provided by the inductive property of the medium, i.e. the permeability �, which has


the units of henries per metre. The elasticity or capacitive property of the medium is


provided by the permittivity ", with units of farads per metre. The storage of magnetic


energy arises through the permeability �; the potential or electric field energy is stored


through the permittivity ".
If the material is defined as a dielectric, only � and " are effective and a pure wave


equation for both the magnetic field vector H and the electric field vector E will result. If


the medium is a conductor, having conductivity � (the inverse of resistivity) with


dimensions of siemens per metre or (ohms m)�1, in addition to � and ", then some of the


wave energy will be dissipated and absorption will take place.


In this chapter we will consider first the propagation of electromagnetic waves in a


medium characterized by � and " only, and then treat the general case of a medium having


�, " and � properties.


Maxwell’s Equations


Electromagnetic waves arise whenever an electric charge changes its velocity. Electrons


moving from a higher to a lower energy level in an atom will radiate a wave of a particular


frequency and wavelength. A very hot ionized gas consisting of charged particles will


radiate waves over a continuous spectrum as the paths of individual particles are curved in
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mutual collisions. This radiation is called ‘Bremsstrahlung’. The radiation of electro-


magnetic waves from an aerial is due to the oscillatory motion of charges in an alternating


current flowing in the aerial.


Figure 8.1 shows the frequency spectrum of electromagnetic waves. All of these waves


exhibit the same physical characteristics.


It is quite remarkable that the whole of electromagnetic theory can be described by the


four vector relations in Maxwell’s equations. In examining these relations in detail we shall


see that two are steady state; that is, independent of time, and that two are time-varying.


The two time-varying equations are mathematically sufficient to produce separate wave


equations for the electric and magnetic field vectors, E and H, but the steady state equations


help to identify the wave nature as transverse.


The first time-varying equation relates the time variation of the magnetic induction,


�H ¼ B, with the space variation of E; that is


@


@t
ð�HÞ is connected with


@E


@z
ðsayÞ


This is nothing but a form of Lenz’s or Faraday’s Law, as we shall see.


The second time-varying equation states that the time variation of "E defines the space


variation of H, that is


@


@t
ð"EÞ is connected with


@H


@z
ðsayÞ


Again we shall see that this is really a statement of Ampere’s Law.


These equations show that the variations of E in time and space affect those of H and


vice versa. E and H cannot be considered as isolated quantities but are interdependent.


The product "E has dimensions


farads


metre
� volts


metre
¼ charge


area


This charge per unit area is called the displacement charge D ¼ "E.


Physically it appears in a dielectric when an applied electric field polarizes the


constituent atoms or molecules and charge moves across any plane in the dielectric which
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Figure 8.1 Wavelengths and frequencies in the electromagnetic spectrum
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is normal to the applied field direction. If the applied field is varying or alternating with


time we see that the dimensions of


@D


@t
¼ @


@t
ð"EÞ ¼ charge


time � area


current per unit area. This current is called the displacement current. It is comparatively


simple to visualize this current in a dielectric where physical charges may move—it is not


easy to associate a displacement current with free space in the absence of a material but it may


always be expressed as Id ¼ "ð@�E=@tÞ, where �E is the electric field flux through a surface.


Consider what happens in the electric circuit of Figure 8.2 when the switch is closed and


the battery begins to charge the condenser C to a potential V. A current I obeying Ohm’s


Law (V ¼ IR) will flow through the connecting leads as long as the condenser is charging


and a compass needle or other magnetic field detector placed near the leads will show the


presence of the magnetic field associated with that current. But suppose a magnetic field


detector (shielded from all outside effects) is placed in the region between the condenser


plates where no ohmic or conduction current is flowing. Would it detect a magnetic field?


The answer is yes; all the magnetic field effects from a current exist in this region as long


as the condenser is charging, that is, as long as the potential difference and the electric field


between the condenser plates are changing.


It was Maxwell’s major contribution to electromagnetic theory to assert that the


existence of a time-changing electric field in free space gave rise to a displacement current.


The same result follows from considering the conservation of charge. The flow of charge


into any small volume in space must equal that flowing out. If the volume includes the top


plate of the condenser the ohmic current through the leads produces the flow into the


volume, while the displacement current represents the flow out.


In future, therefore, two different kinds of current will have to be considered:


1. The familar conduction current obeying Ohm’s Law (V ¼ IR) and


2. The displacement current of density @D=@t.


Battery


Switch
closed


Magnetic
field?


R


C


I


Figure 8.2 In this circuit, when the switch is closed the conduction current charges the condenser.
Throughout charging the quantity "E in the volume of the condenser is changing and the
displacement current per unit area @=@t ("E) is associated with the magnetic field present between
the condenser plates
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In a medium of permeability � and permittivity ", but where the conductivity � ¼ 0, the


displacement current will be the only current flowing. In this case a pure wave equation for


E and H will follow and there will be no energy loss or attenuation.


When � 6¼ 0 a resistive element allows the conduction current to flow, energy loss will


follow, a diffusion term is added to the wave equation and the wave amplitude will


attenuate exponentially with distance. We shall see that the relative magnitude of these two


currents is frequency-dependent and that their ratio governs whether the medium behaves


as a conductor or as a dielectric.


Electromagnetic Waves in a Medium having Finite Permeability
l and Permittivity e but with Conductivity r ¼ 0


We shall consider a system of plane waves and choose the plane xy as that region over


which the wave properties are constant. These properties will not vary with respect to x and


y and all derivatives @=@x and @=@y will be zero.


The first time-varying equation of Maxwell is written in vector notation as


curl E ¼ r� E ¼ � @B


@t
¼ ��@H


@t


This represents three component equations:


�� @
@t


Hx ¼
@


@y
Ez �


@


@z
Ey


�� @
@t


Hy ¼
@


@z
Ex �


@


@x
Ez


�� @
@t


Hz ¼
@


@x
Ey �


@


@y
Ex


9>>>>>>>=
>>>>>>>;


ð8:1Þ


where the subscripts represent the component directions. Ex, Ey and Ez are, respectively, the


magnitudes of ExEy and Ez. Similarly, Hx, Hy and Hz are the magnitudes of HxHy and Hz.


The dimensions of these equations may be written


� �H


time
¼ E


length


and multiplying each side by (length)2 gives


� �H


time
� area ¼ E � length


i.e.


total magnetic flux


time
¼ volts


This is dimensionally of the form of Lenz’s or Faraday’s Law.
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The second time-varying equation of Maxwell is written in vector notation as


curl H ¼ r� H ¼ @D


@t
¼ "


@E


@t


This represents three component equations:


"
@


@t
Ex ¼


@


@y
Hz �


@


@z
Hy


"
@


@t
Ey ¼


@


@z
Hx �


@


@x
Hz


"
@


@t
Ez ¼


@


@x
Hy �


@


@y
Hx


9>>>>>>>=
>>>>>>>;


ð8:2Þ


The dimensions of these equations may be written


current I


area
¼ H


length


and multiplying both sides by a length gives


current


length
¼ I


length
¼ H


which is dimensionally of the form of Ampere’s Law (i.e. the circular magnetic field at


radius r due to the current I flowing in a straight wire is given by H ¼ I=2�r). Maxwell’s


first steady state equation may be written


div D ¼ r � D ¼ "
@Ex


@x
þ @Ey


@y
þ @Ez


@z


� �
¼ 	 ð8:3Þ


where " is constant and 	 is the charge density. This states that over a small volume element


dx dy dz of charge density 	 the change of displacement depends upon the value of 	.


When 	 ¼ 0 the equation becomes


"
@Ex


@x
þ @Ey


@y
þ @Ez


@z


� �
¼ 0 ð8:3aÞ


so that if the displacement D ¼ "E is graphically represented by flux lines which must


begin and end on electric charges, the number of flux lines entering the volume element dx


dy dz must equal the number leaving it.


The second steady state equation is written


div B ¼ r � B ¼ �
@Hx


@x
þ @Hy


@y
þ @Hz


@z


� �
¼ 0 ð8:4Þ
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Again this states that an equal number of magnetic induction lines enter and leave the


volume dx dy dz. This is a physical consequence of the non-existence of isolated magnetic


poles, i.e. a single north pole or south pole.


Whereas the charge density 	 in equation (8.3) can be positive, i.e. a source of flux lines


(or displacement), or negative, i.e. a sink of flux lines (or displacement), no separate source


or sink of magnetic induction can exist in isolation, every source being matched by a sink


of equal strength.


The Wave Equation for Electromagnetic Waves


Since, with these plane waves, all derivatives with respect to x and y are zero. equations


(8.1) and (8.4) give


��@Hz


@t
¼ 0 and


@Hz


@z
¼ 0


therefore, Hz is constant in space and time and because we are considering only the


oscillatory nature of H a constant Hz can have no effect on the wave motion. We can


therefore put Hz ¼ 0. A similar consideration of equations (8.2) and (8.3a) leads to the


result that Ez ¼ 0.


The absence of variation in Hz and Ez means that the oscillations or variations in H and


E occur in directions perpendicular to the z-direction. We shall see that this leads to the


conclusion that electromagnetic waves are transverse waves.


In addition to having plane waves we shall simplify our picture by considering only


plane-polarized waves.


We can choose the electric field vibration to be in either the x or y direction. Let us


consider Ex only, with Ey ¼ 0. In this case equations (8.1) give


��@Hy


@t
¼ @Ex


@z
ð8:1aÞ


and equations (8.2) give


"
@Ex


@t
¼ � @Hy


@z
ð8:2aÞ


Using the fact that


@ 2


@z@t
¼ @ 2


@t@z


it follows by taking @=@t of equation (8.1a) and @=@z of equation (8.2a) that


@ 2


@z2
Hy ¼ �"


@ 2


@t 2
Hy (the wave equation for HyÞ
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Similarly, by taking @=@t of (8.2a) and @=@z of (8.1a), we obtain


@ 2


@z2
Ex ¼ �"


@ 2


@t 2
Ex (the wave equation for ExÞ


Thus, the vectors Ex and Hy both obey the same wave equation, propagating in the


z-direction with the same velocity v 2 ¼ 1=�". In free space the velocity is that of light, that


is, c2 ¼ 1=�0"0, where �0 is the permeability of free space and "0 is the permittivity of


free space.


The solutions to these wave equations may be written, for plane waves, as


Ex ¼ E0 sin
2�




ðvt � zÞ


Hy ¼ H0 sin
2�




ðvt � zÞ


where E0 and H0 are the maximum amplitude values of E and H. Note that the sine (or


cosine) solutions means that no attenuation occurs: only displacement currents are involved


and there are no conductive or ohmic currents.


We can represent the electromagnetic wave (Ex, Hy) travelling in the z-direction in


Figure 8.3, and recall that because Ez and Hz are constant (or zero) the electromagnetic


wave is a transverse wave.


The direction of propagation of the waves will always be in the E�H direction; in this


case, E�H has magnitude, ExHy and is in the z-direction.


This product has the dimensions


voltage � current


length � length
¼ electrical power


area


measured in units of watts per square metre.


Hy
H 0


H 0


(E × H)Z


E 0


E 0


Ex


(Vt  – Z )Ex = E 0 Sin 2π
λ


(Vt  – Z )Hx = H 0 Sin 2π
λ


Figure 8.3 In a plane-polarized electromagnetic wave the electric field vector Ex and magnetic
field vector Hy are perpendicular to each other and vary sinusoidally. In a non-conducting medium
they are in phase. The vector product, E�H, gives the direction of energy flow
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The vector product, E�H gives the direction of energy flow. The energy flow per second


across unit area is given by the Poynting vector:


1


2
E � H



(Problem 8.1)


Illustration of Poynting Vector


We can illustrate the flow of electromagnetic energy in terms of the Poynting vector by


considering the simple circuit of Figure 8.4, where the parallel plate condenser of area A


and separation d, containing a dielectric of permittivity ", is being charged to a voltage V.


Throughout the charging process current flows, and the electric and magnetic field


vectors show that the Poynting vector is always directed into the volume Ad occupied by


the dielectric.


The capacitance C of the condenser is "A=d and the total energy of the condenser at


potential V is 1
2


CV 2 joules, which is stored as electrostatic energy. But V ¼ Ed, where E is


the final value of the electric field, so that the total energy


1


2
CV 2 ¼ 1


2


"A


d


� �
E 2d 2 ¼ 1


2
ð"E 2ÞAd


where Ad is the volume of the condenser.


The electrostatic energy per unit volume stored in the condenser is therefore 1
2
"E 2 and


results from the flow of electromagnetic energy during charging.


H E


I


E × H


Area A


Plate
separation d


Dielectric
permittivity e


E × H directed to
condenser axis


Figure 8.4 During charging the vector E�H is directed into the condenser volume. At the end of
the charging the energy is totally electrostatic and equals the product of the condenser volume, Ad,
and the electrostatic energy per unit volume, 1


2 "E
2
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Impedance of a Dielectric to Electromagnetic Waves


If we put the solutions


Ex ¼ E0 sin
2�




ðvt � zÞ


and


Hy ¼ H0 sin
2�




ðvt � zÞ


in equation (8.1a) where


��@Hy


@t
¼ @Ex


@z


then


��vHy ¼ �Ex; and since v 2 ¼ 1


�"ffiffiffi
�


p
Hy ¼


ffiffiffi
"


p
Ex


that is


Ex


Hy


¼
ffiffiffi
�


"


r
¼ E0


H0


which has the dimensions of ohms.


The value
ffiffiffiffiffiffiffiffi
�="


p
therefore represents the characteristic impedance of the medium to


electromagnetic waves (compare this with the equivalent result V=I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0


p
¼ Z0 for


the transmission line of the previous chapter).


In free space


Ex


Hy


¼
ffiffiffiffiffiffi
�0


"0


r
¼ 376:7�


so that free space presents an impedance of 376.7� to electromagnetic waves travelling


through it.


It follows from


Ex


Hy


¼
ffiffiffi
�


"


r
that


E 2
x


H 2
y


¼ �


"


and therefore


"E 2
x ¼ �H 2


y


Both of these quantities have the dimensions of energy per unit volume, for instance "E 2
x


has dimensions


farads


metre
� volts2


metres2
¼ joules


metres3
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as we saw in the illustration of the Poynting vector. Thus, for a dielectric the electrostatic


energy 1
2
"E 2


x per unit volume in an electromagnetic wave equals the magnetic energy per


unit volume 1
2
�H 2


y and the total energy is the sum 1
2
"E 2


x þ 1
2
�H 2


y .


This gives the instantaneous value of the energy per unit volume and we know that, in


the wave,


Ex ¼ E0 sin ð2�=
Þðvt � zÞ


and


Hy ¼ H0 sin ð2�=
Þðvt � zÞ


so that the time average value of the energy per unit volume is


1
2
"�EE 2


x þ 1
2
��HH 2


y ¼ 1
4
"E 2


0 þ 1
4
�H 2


0


¼ 1
2
"E 2


0 J m�3


Now the amount of energy in an electromagnetic wave which crosses unit area in unit


time is called the intensity, I, of the wave and is evidently (1
2
"E 2


0Þv where v is the velocity


of the wave.


This gives the time averaged value of the Poynting vector and, for an electromagnetic


wave in free space we have


I ¼ 1
2


c"0E 2
0 ¼ 1


2
c�0H 2


0 W m�2


(Problems 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11)


Electromagnetic Waves in a Medium of Properties l, e and r
(where r 6¼ 0)


From a physical point of view the electric vector in electromagnetic waves plays a much more


significant role than the magnetic vector, e.g. most optical effects are associated with the


electric vector. We shall therefore concentrate our discussion on the electric field behaviour.


In a medium of conductivity � ¼ 0 we have obtained the wave equation


@ 2Ex


@z2
¼ �"


@ 2Ex


@t 2


where the right hand term, rewritten


�
@


@t


@


@t
ð"ExÞ



 �


shows that we are considering a term


�
@


@t


displacement current


area



 �
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When � 6¼ 0 we must also consider the conduction currents which flow. These currents are


given by Ohm’s Law as I ¼ V=R, and we define the current density; that is, the current per


unit area, as


J ¼ I


Area
¼ 1


R � Length
� V


Length
¼ �E


where � is the conductivity 1/ðR � LengthÞ and E is the electric field. J ¼ �E is another


form of Ohm’s Law.


With both displacement and conduction currents flowing, Maxwell’s second time-


varying equation reads, in vector form,


r� H ¼ @


@t
D þ J ð8:5Þ


each term on the right hand side having dimensions of current per unit area. The presence


of the conduction current modifies the wave equation by adding a second term of the same


form to its righthand side, namely


�
@


@t


current


area


� 
which is �


@


@t
ðJÞ ¼ �


@


@t
ð�EÞ


The final equation is therefore given by


@ 2


@z2
Ex ¼ �"


@ 2


@t 2
Ex þ ��


@


@t
Ex ð8:6Þ


and this equation may be derived formally by writing the component equation of (8.5) as


"
@Ex


@t
þ �Ex ¼ � @Hy


@z
ð8:5aÞ


together with


��@Hy


@t
¼ @Ex


@z
ð8:1aÞ


and taking @=@t of (8.5a) and @=@z of (8.1a). We see immediately that the presence of the


resistive or dissipation term, which allows conduction currents to flow, will add a diffusion


term of the type discussed in the last chapter to the pure wave equation. The product


ð��Þ�1
is called the magnetic diffusivity, and has the dimensions L2T �1, as we expect of


all diffusion coefficients.


We are now going to look for the behaviour of Ex in this new equation, with the


assumption that its time-variation is simple harmonic, so that Ex ¼ E0 e i!t. Using this


value in equation (8.6) gives


@ 2Ex


@z2
� ði!��� !2�"ÞEx ¼ 0
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which is in the form of equation (7.5), written


@ 2Ex


@z2
� � 2Ex ¼ 0


where � 2 ¼ i!��� !2�".
We saw in Chapter 7 that this produced a solution with the term e��z or eþ�z, but we


concentrate on the Ex oscillation in the positive z-direction by writing


Ex ¼ E0 e i!t e��z


In order to assign a suitable value to � we must go back to equation (8.6) and consider the


relative magnitudes of the two right hand side terms. If the medium is a dielectric, only


displacement currents will flow. When the medium is a conductor, the ohmic currents of


the second term on the right hand side will be dominant. The ratio of the magnitudes of the


conduction current density to the displacement current density is the ratio of the two right


hand side terms. This ratio is


J


@D=@t
¼ �Ex


@=@tð"ExÞ
¼ �Ex


@=@tð"E0 e i!tÞ ¼
�Ex


i!"Ex


¼ �


i!"


We see immediately from the presence of i that the phase of the displacement current is


90� ahead of that of the ohmic or conduction current. It is also 90� ahead of the electric


field Ex so the displacement current dissipates no power.


For a conductor, where J  @D=@t, we have � !", and � 2 ¼ i�ð!�Þ � !"ð!�Þ
becomes


� 2 � i�!�


to a high order of accuracy.


Now


ffiffi
i


p
¼ 1 þ iffiffiffi


2
p


so that


� ¼ ð1 þ iÞ !��


2


� 1=2


and


Ex ¼ E0 e i!t e��z


¼ E0 e�ð!��=2Þ 1=2
z ei½!t�ð!��=2Þ 1=2


z�
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a progressive wave in the positive z-direction with an amplitude decaying with the factor


e�ð!��=2Þ1=2
z.


Note that the product !�� has dimensions L�2.


(Problem 8.12)


Skin Depth


After travelling a distance


� ¼ 2


!��


� �1=2


in the conductor the electric field vector has decayed to a value Ex ¼ E0 e�1; this distance


is called the skin depth (Figure 8.5).


For copper, with � � �0 and � ¼ 5:8 � 107 S m�1 at a frequency of 60 Hz, � � 9 mm;


at 1 MHz, � � 6:6 � 10�5 m and at 30 000 MHz (radar wavelength of 1 cm),


� � 3:8 � 10�7 m.


Thus, high frequency electromagnetic waves propagate only a very small distance in a


conductor. The electric field is confined to a very small region at the surface; significant


currents will flow only at the surface and the resistance of the conductor therefore increases


with frequency. We see also why a conductor can act to ‘shield’ a region from electro-


magnetic waves.


Electromagnetic Wave Velocity in a Conductor and Anomalous
Dispersion


The phase velocity of the wave v is given by


v ¼ !


k
¼ !


ð!��=2Þ1=2
¼ !� ¼ 2!


��


� �1=2


¼ �
c


Free space Conductor


λc = 2 p δ


Ex


Z


λc


2
wms


1
2(        )δ =


Figure 8.5 Electromagnetic waves in a dielectric strike the plane surface of a conductor, and the
electric field vector E 0 is damped to a value E 0 e�1 in a distance of ð2=!��Þ 1=2, the ‘skin depth’. This
explains the electrical shielding properties of a conductor. 
 c is the wavelength in the conductor
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When � is small, v is small, and the refractive index c=v of a conductor can be very large.


We shall see later that this can explain the high optical reflectivities of good conductors.


The velocity v ¼ !� ¼ 2���, so that 
 c in the conductor is 2�� and can be very small.


Since v is a function of the frequency an electrical conductor is a dispersive medium to


electromagnetic waves. Moreover, as the table below shows us, @v=@
 is negative, so that


the conductor is anomalously dispersive and the group velocity is greater than the wave


velocity. Since c2=v 2 ¼ �"=�0"0 ¼ � r" r, where the subscript r defines non-dimensional


relative values; that is, �=�0 ¼ � r, "="0 ¼ " r, then for � r � 1


" rv
2 ¼ c2


and


@


@

" r ¼ � 2


v
" r


@v


@



which confirms our statement in the chapter on group velocity that for @" r=@
 positive a


medium is anomalously dispersive. We see too that c2=v 2 ¼ " r ¼ n2, where n is the


refractive index, so that the curve in Figure 3.9 showing the reactive behaviour of the


oscillator impedance at displacement resonance is also showing the behaviour of n. This


relative value of the permittivity is, of course, familiarly known as the dielectric constant


when the frequency is low. This identity is lost at higher frequencies because the


permittivity is frequency-dependent.


Note that 
 c ¼ 2�� is very small, and that when an electromagnetic wave strikes a


conducting surface the electric field vector will drop to about 1% of its surface value in a


distance equal to 3
4

 c ¼ 4:6 �. Effectively, therefore, the electromagnetic wave travels less


than one wavelength into the conductor.


(Problems 8.13, 8.14, 8.15)


When is a Medium a Conductor or a Dielectric?


We have already seen that in any medium having �" and � properties the magnitude of the


ratio of the conduction current density to the displacement current density


J


@D=@t
¼ �


!"


a non-dimensional quantity.


Refractive


� v conductor ¼ !� index


Frequency 
 free space (m) (m/s) (c=v conductor)


60 5000 km 9�10�3 3.2 9.5�10 7


10 6 300 m 6.6�10�5 4.1�10 2 7.3�10 5


3�10 10 10�2 m 3.9�10�7 7.1�10 4 4.2�10 3
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We may therefore represent the medium by the simple circuit in Figure 8.6 where the


total current is divided between the two branches, a capacitative branch of reactance 1/!"
(ohms-metres) and a resistive branch of conductance � (siemens/metre). If � is large the


resistivity is small, and most of the current flows through the � branch and is conductive. If


the capacitative reactance 1/!" is so small that it takes most of the current, this current is


the displacement current and the medium behaves as a dielectric.


Quite arbitrarily we say that if


J


@D=@t
¼ �


!"
> 100


then conduction currents dominate and the medium is a conductor. If


@D=@t


J
¼ !"


�
> 100


then displacement currents dominate and the material behaves as a dielectric. Between


these values exist a range of quasi-conductors; some of the semi-conductors fall into this


category.


The ratio �=!" is, however, frequency dependent, and a conductor at one frequency may


be a dielectric at another.


For copper, which has � ¼ 5:8 � 107 S m�1 and " � "0¼ 9 � 10�12 F m�1,


�


!"
� 1018


frequency


total
J


conduction
current s E


displacement
current w e E


1
Reactance


w e
1
R


Conductivity


s ∝


Figure 8.6 A simple circuit showing the response of a conducting medium to an electromagnetic
wave. The total current density J is divided by the parallel circuit in the ratio �=!" (the ratio of the
conduction current density to the displacement current density). A large conductance � (small
resistance) gives a large conduction current while a small capacitative reactance 1/!" allows a large
displacement current to flow. For a conductor �=!"� 100; for a dielectric !"=�� 100. Note the
frequency dependence of this ratio. At ! � 1020 rad/s copper is a dielectric to X-rays
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so up to a frequency of 1016 Hz (the frequency of ultraviolet light) �=!" > 100, and


copper is a conductor. At a frequency of 1020 Hz, however (the frequency of X-rays),


!"=� > 100, and copper behaves as a dielectric. This explains why X-rays travel distances


equivalent to many wavelengths in copper.


Typically, an insulator has � � 10�15 S m�1 and " � 10�11F m�1, which gives


!"


�
� 104!


so the conduction current is negligible at all frequencies.


Why will an Electromagnetic Wave not Propagate into a
Conductor?


To answer this question we need only consider the simple circuit where a condenser C


discharges through a resistance R. The voltage equation gives


q


C
þ IR ¼ 0


and since I ¼ dq=dt, we have


dq


dt
¼ � q


RC
or q ¼ q0 e�t=RC


where q0 is the initial charge.


We see that an electric field will exist between the plates of the condenser only for a time


t � RC and will disappear when the charge has had time to distribute itself uniformly


throughout the circuit. An electric field can only exist in the presence of a non-uniform


charge distribution.


If we take a slab of any medium and place a charge of density q at a point within the slab,


the medium will behave as an RC circuit and the equation


q ¼ q0 e�t=RC


becomes


q ¼ q0 e��=!" ! q0 e��t=" " � C


� � 1=R


� �


The charge will distribute itself uniformly in a time t � "=�, and the electric field will be


maintained for that time only. The time "=� is called the relaxation time of the medium


(RC time of the electrical circuit) and it is a measure of the maximum time for which an


electric field can be maintained before the charge distribution becomes uniform.


Any electric field of a frequency �, where 1=� ¼ t > "=�, will not be maintained; only a


high frequency field where 1=� ¼ t < "=� will establish itself.


214 Electromagnetic Waves







Impedance of a Conducting Medium to Electromagnetic Waves


The impedance of a lossless medium is a real quantity. For the transmission line of Chapter


7 the characteristic impedance


Z0 ¼ Vþ
Iþ


¼
ffiffiffiffiffiffi
L0


C0


r
� ;


for an electromagnetic wave in a dielectric


Z ¼ Ex


Hy


¼
ffiffiffi
�


"


r
�


with Ex and Hy in phase.


We saw in the case of the transmission line that when the loss mechanisms of a series


resistance R0 and a shunt conductance G0 were introduced the impedance became the


complex quantity


Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0


G0 þ i!C0


r


We now ask what will be the impedance of a conducting medium of properties �, " and � to


electromagnetic waves? If the ratio of Ex to Hy is a complex quantity, it implies that a


phase difference exists between the two field vectors.


We have already seen that in a conductor


Ex ¼ E0 e i!t e��z


where � ¼ ð1 þ iÞ ð!��=2Þ1=2
, and we shall now write Hy ¼ H0 e ið!t��Þ e��z, suggesting


that Hy lags Ex by a phase angle �. This gives the impedance of the conductor as


Z c ¼
Ex


Hy


¼ E0


H0


e i�


Equation (8.1a) gives


@Ex


@z
¼ ��@Hy


@t


so that


��Ex ¼ �i!�Hy


and


Zc ¼
Ex


Hy


¼ i!�


�
¼ ið!�Þ


ð1 þ iÞð!��=2Þ1=2
¼ ið1 � iÞ


ð1 þ iÞð1 � iÞ
2!�


�


� �1=2


¼ ð1 þ iÞ
2


2!�


�


� �1=2


¼ 1 þ iffiffiffi
2


p !�


�


� 1=2


¼ !�


�


� 1=2 1ffiffiffi
2


p þ i
1ffiffiffi
2


p
� �


¼ !�


�


� 1=2


e i�
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a vector of magnitude ð!�=�Þ1=2
and phase angle � ¼ 45�. Thus the magnitude


Zc ¼
E0


H0


¼ !�


�


� 1=2


and Hy lags Ex by 45�.
We can also express Zc by


Zc ¼ R þ iX ¼ !�


2�


� 1=2


þ i
!�


2�


� 1=2


and also write it


Zc ¼
1 þ iffiffiffi


2
p !�


�


� 1=2


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0


"0


"0


"


�


�0


!"


�


r
ei�


of magnitude


jZcj ¼ 376:6�


ffiffiffiffiffi
� r


" r


r ffiffiffiffiffiffi
!"


�


r


At a wavelength 
 ¼ 10�1 m, i.e. at a frequency � ¼ 3000 MHz, the value of !"=� for


copper is 2.9�10�9 and � r � " r � 1. This gives a magnitude Zc ¼ 0:02� at this


frequency; for � ¼ 1, Zc ¼ 0, and the electric field vector Ex vanishes, so we can say that


when Zc is small or zero the conductor behaves as a short circuit to the electric field. This


sets up large conduction currents and the magnetic energy is increased.


In a dielectric, the impedance


Z ¼ Ex


Hy


¼
ffiffiffi
�


"


r


led to the equivalence of the electric and magnetic field energy densities; that is,
1
2
�H 2


y ¼ 1
2
"E 2


x . In a conductor, the magnitude of the impedance


Zc ¼
Ex


Hy


����
���� ¼ !�


�


� 1=2


so that the ratio of the magnetic to the electric field energy density in the wave is


1
2
�H 2


y


1
2
"E 2


x


¼ �


"


�


!�
¼ �


!"


We already know that this ratio is very large for a conductor for it is the ratio of


conduction to displacement currents, so that in a conductor the magnetic field energy


dominates the electric field energy and increases as the electric field energy decreases.


216 Electromagnetic Waves







Reflection and Transmission of Electromagnetic Waves at a
Boundary


Normal Incidence


An infinite plane boundary separates two media of impedances Z1 and Z2 (real or complex)


in Figure 8.7.


The electromagnetic wave normal to the boundary has the components shown where


subscripts i, r and t denote incident, reflected and transmitted, respectively. Note that the


vector direction (E r�H r) must be opposite to that of (E i�H i) to satisfy the energy flow


condition of the Poynting vector.


The boundary conditions, from electromagnetic theory, are that the components of the


field vectors E and H tangential or parallel to the boundary are continuous across the


boundary.


Thus


E i þ E r ¼ E t


and


H i þ H r ¼ H t


where


E i


H i


¼ Z1;
E r


H r


¼ �Z1 and
E t


H t


¼ Z2


Incident


External reflection


Transmitted
Internal reflection


Z 2 < Z 1


Z 1 < Z 2


Z 1 Z 2


E r


E t


E r


E i


H i


H r


H r H t


Figure 8.7 Reflection and transmission of an electromagnetic wave incident normally on a plane
between media of impedances Z1 and Z2. The Poynting vector of the reflected wave (E � H) r shows
that either E or H may be reversed in phase, depending on the relative magnitudes of Z 1 and Z2
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From these relations it is easy to show that the amplitude reflection coefficient


R ¼ E r


E i


¼ Z2 � Z1


Z2 þ Z1


and the amplitude transmission coefficient


T ¼ E t


E i


¼ 2Z2


Z2 þ Z1


in agreement with the reflection and transmission coefficients we have found for the


acoustic pressure p (Chapter 6) and voltage V (Chapter 7). If the wave is travelling in air


and strikes a perfect conductor of Z2 ¼ 0 at normal incidence then


E r


E i


¼ Z2 � Z1


Z2 þ Z1


¼ �1


giving complete reflection and


E t


E i


¼ 2Z2


Z2 þ Z1


¼ 0


Thus, good conductors are very good reflectors of electromagnetic waves, e.g. lightwaves


are well reflected from metal surfaces. (See Summary on p. 550.)


Oblique Incidence and Fresnel’s Equations for Dielectrics


When the incident wave is oblique and not normal to the infinite boundary of Figure 8.7 we


may still use the boundary conditions of the preceding section for these apply to the


tangential components of E and H at the boundary and remain valid.


In Figure 8.8(a) H is perpendicular to the plane of the paper with tangential components


H i, Hr and H t but the tangential components of E become


E i cos �; E r cos � and E t cos �; respectively:


In Figure 8.8(b) E is perpendicular to the plane of the paper with tangential components


E i, E r and E t but the tangential components of H become H i cos �, H r cos � and H t cos �.


Using these components in the expressions for the reflextion and transmission


coefficients we have, for Figure 8.8(a)


E r cos �


E i cos �
¼ E t cos �=H t � E i cos �=H i


E t cos �=H t þ E i cos �=H i


so


Rk ¼
E r


E i


¼ Z2 cos �� Z1 cos �


Z2 cos �þ Z1 cos �


where Rk is the reflection coefficient amplitude when E lies in the plane of incidence.
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For the transmission coefficient in Figure 8.8(a)


E t cos �


E i cos �
¼ 2E t cos �=H t


E i cos �=H i þ E t cos �=H t


so


Tk ¼
E t


E i


¼ 2Z2 cos �


Z1 cos �þ Z2 cos �


A similar procedure for Figure 8.8(b) where E is perpendicular to the plane of incidence


yields


R? ¼ Z2 cos �� Z1 cos �


Z2 cos �þ Z1 cos �


and


T? ¼ 2Z2 cos �


Z2 cos �þ Z1 cos �


Now the relation between the refractive index n of the dielectric and its impedance Z is


given by


n ¼ c


v
¼


ffiffiffiffiffiffiffiffiffiffi
�"


�0"0


r
¼ ffiffiffiffiffi


" r


p ¼ Zðfree spaceÞ
Z ðdielectricÞ


E r


E t


q f


q


Z 1 Z 2


E i


H r


H t


q f


q


Z 1 Z 2


H i


(a) (b)


Figure 8.8 Incident, reflected and transmitted components of a plane polarized electromagnetic
wave at oblique incidence to the plane boundary separating media of impedances Z 1 and Z 2. The
electric vector lies in the plane of incidence in (a) and is perpendicular to the plane of incidence in (b)
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where
�


�0


¼ � r � 1:


Hence we have


Z1


Z2


¼ n2


n1


¼ sin �


sin �


from Snell’s Law and we may write the reflection and transmission amplitude coef-


ficients as


Rk ¼
tan ð�� �Þ
tan ð�þ �Þ ; Tk ¼


4 sin � cos �


sin 2�þ sin 2�


R? ¼ sin ð�� �Þ
sin ð�þ �Þ ; T? ¼ 2 sin � cos �


sin ð�þ �Þ


In this form the expressions for the coefficients are known as Fresnel’s Equations.


They are plotted in Figure 8.9 for n2=n1 ¼ 1:5 and they contain several significant


features.


When � is very small and incidence approaches the normal we have �! 0 and �! 0


so that


sin ð�� �Þ � tan ð�� �Þ � ð�� �Þ
and


Rk � R? � ð�� �Þ
ð�þ �Þ �


1


n2


� 1


n1


1


n2


þ 1


n1


¼ n1 � n2


n1 þ n2


Thus, the reflected intensity


R2
�!0 ¼ I r


I i


¼ n1 � n2


n1 þ n2


� �2


� 0:4 at an air-glass interface.


We note also that when tan ð�þ �Þ ¼ 1 and �þ � ¼ 90� then Rk ¼ 0.


In this case only R? is finite and the reflected light is completely plane polarized with the


electric vector perpendicular to the plane of incidence. This condition defines the value of


the Brewster or polarizing angle �B for, when � and � are complementary cos �B ¼ sin � so


n1 sin �B ¼ n2 sin � ¼ n2 cos �B


and


tan �B ¼ n2=n1


which, for air to glass defines �B ¼ 56�.
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A typical modern laboratory use of the Brewster angle is the production of linearly


polarized light from a He-Ne laser. If the window at the end of the laser tube is tilted so that


the angle of incidence for the emerging light is �B and Rk ¼ 0, then the light with its


electric vector parallel to the plane of incidence is totally transmitted while some of the


light with transverse polarization (R?) is reflected back into the laser off-axis. If the light


makes multiple transits along the length of the tube before it emerges the transmitted beam


is strongly polarized in one plane.


More general but less precise uses involve the partial polarization of light reflected from


wet road and other shiny surfaces where refractive indices are in the range n ¼ 1:3 � 1:6.


Polarized windscreens and spectacles are effective in reducing the glare from such


reflections.
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Figure 8.9 Amplitude coefficient R and T of reflection and transmission for n 2=n1 ¼ 1:5. Rk and T k
refer to the case when the electric field vector E lies in the plane of incidence. R? and T? apply when
E is perpendicular to the plane of incidence. The Brewster angle �B defines �þ � ¼ 90� when Rk ¼ 0
and the reflected light is polarized with the E vector perpendicular to the plane of incidence. Rk
changes sign (phase) at �B. When � < �B, tan (�� �) is negative for n2=n1 ¼ 1:5. When
�þ �� 90�, tan (�þ �) is also negative


Reflection and Transmission of Electromagnetic Waves at a Boundary 221







Reflection from a Conductor (Normal Incidence)


For Z2 a conductor and Z1 free space, the refractive index


n ¼ Z1


Z2


¼ �


�þ i�


is complex, where


� ¼
ffiffiffiffiffiffi
�0


"0


r


and


� ¼ !�


2�


� 1=2


A complex refractive index must always be interpreted in terms of absorption because a


complex impedance is determined by a complex propagation constant, e.g. here Z2 ¼
i!�=�, so that


n ¼ Z1


Z2


¼
ffiffiffiffiffiffi
�0


"0


r
1


i!�
ð1 þ iÞ !��


2


� 1=2


¼ ð1 � iÞ �


2!"0


� �1=2


where


ð��0Þ1=2


�
� 1


The ratio E r=E i is therefore complex (there is a phase difference between the incident and


reflected vectors) with a value


E r


E i


¼ Z2 � Z1


Z2 þ Z1


¼ �þ i�� �


�þ i�þ �
¼ 1 � �=�þ i


1 þ �=�þ i


where �=� 1.


Since E r=E i is complex, the value of the reflected intensity I r ¼ ðE r=E iÞ2
is found


by taking the ratio the squares of the moduli of the numerator and the denominator, so


that


I r ¼
jE rj2


jE ij2
¼ jZ2 � Z1j2


jZ2 þ Z1j2
¼ ð1 � �=�Þ2 þ 1


ð1 þ �=�Þ2 þ 1


¼ 1 � 4�=�


2 þ 2�=�þ ð�=�Þ2
! 1 � 4�


�
ðfor �=� 1Þ
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so that


I r ¼ 1 � 4
!�


2�


� 1=2 "0


�0


� �1=2


� 1 � 2


ffiffiffiffiffiffiffiffiffiffi
2!"0


�


r


For copper � ¼ 6 � 107ðohm m�1Þ and ð2!"0=�Þ1=2 � 0:01 at infra-red frequencies. The


emission from an electric heater at 103K has a peak at 
 � 2:5 � 10�6m. A metal reflector


behind the heater filament reflects � 97% of these infra-red rays with 3% entering the


metal to be lost as Joule heating between the metal surface and the skin depth. (see


Problem 8.20)


(Problems 8.16, 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23, 8.24)


Electromagnetic Waves in a Plasma


We saw in Problem 1.4 that when an electron in an atom or, quantum mechanically the


charge centre of an electron cloud, moves a small distance from its equilibrium position,


the charge separation creates an electric field which acts as a linear restoring force and the


resulting motion is simple harmonic with an angular frequency !0. For a hydrogen atom


!0 � 4:5 � 1016 rad s�1


When a steady electric field is applied to a dielectric, the resulting charge separation


between an electron and the rest of its atom induces a polarization field of magnitude


P ¼ n eex


"0


where P defines the dipole moment per unit volume. Here, ne is the electron number


density, x is the displacement from equilibrium and "0 is the permittivity of free space.


The value of P per unit electric field is called the susceptibility


� ¼ n eex


"0E


and the permittivity of the dielectric is given by


" ¼ "0ð1 þ �Þ


The relative permittivity or dielectric constant


" r ¼
"


"0


¼ ð1 þ �Þ ¼ 1 þ n eex


"0E


� �
ð8:7Þ


A steady electric field E defines a static susceptibility. An alternating electric field E defines


a dynamic susceptibility in which case the relative permittivity.


" r ¼ n2


where n is the refractive index of the medium.
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There may be resistive or damping effects to the electric field within the medium and it is


here that our discussion of the forced damped oscillator on p. 66 becomes significant (see


Figure 3.9).


If the electric field is that of an electromagnetic wave of angular frequency ! we have


E ¼ E0e i!t and the value of x in equatin (8.7) is that given by equation (3.2) on p. 67


representing curve (a) in Figure 3.9 where F0 is now the force Ee acting on each electron.


Equation (8.7) now becomes


" r ¼ 1 þ � ¼ 1 þ n ee2m eð!2
0 � !2Þ


"0½m2
eð!2


0 � !2Þ2 þ !2r 2�


where m e is the electron mass, !0 is its harmonic frequency within the atom, ! is the


electromagnetic wave frequency and r is the damping constant.


This is the solution given to problem 3.10.


Note that for


!� !0


" r � 1 þ n ee2


"0m e!2
0


ð8:8Þ


and for


! !0


" r � 1 � n ee2


"0m e!2


ð8:9Þ


The factor n ee2="0m e in the second term of " r has a particular significance if the material


is not a solid but an ionized gas called a plasma. Such a gas consists of ions and electrons of


equal number densities n i ¼ n e with charges of opposite signs �e and masses m i and m e


where m i  m e. Relative displacements between ions and electrons set up a restoring


electric field which returns the electrons to equilibrium. The relatively heavy ions are


considered as stationary. The result in Figure 8.10 shows a sheet of negative charge �n eex


–nex


ni = nl


Plasma


+nex


nexE = ε0


Figure 8.10 In an ionized gas with equal number densities of ions and electrons (n i ¼ n e) and
m i  m e, relative displacements between ions and electrons form thin sheaths of charge � nex,
which generate an electric field E ¼ nex=" 0 acting on each electron. The motion of each electron is
simple harmonic with an electron plasma frequency !p where !2


p ¼ n ee
2= " 0m e rad s�1
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per unit area on one side of the plasma slab with the stationary ions producing a sheet of


positive charge þneex on the other side (where n i ¼ ne).


This charge separation generates an electric field E in the plasma of magnitude


E ¼ n eex


"0


which produces an electric force �n ee2x="0 acting on each electron in the direction of its


equilibrium position.


The equation of motion of each electron is therefore


m e€xx þ
n ee2x


"0


¼ 0


and the electron motion is simple harmonic with an angular frequency !p where


!2
p ¼ nee2


"0m e


The angular frequency !p is called the electron plasma frequency and plays a significant


role in the propagation of electromagnetic waves in the plasma.


In the expression for the refractive index


" r ¼ n2 � 1 þ
!2


p


!2
0


ð8:8Þ


n is real for all values of ! and waves of that frequency will propagate. However, when


" r ¼ n2 � 1 �
!2


p


!2
ð8:9Þ


waves will propagate only when ! > !p


When !2
p=!


2 > 1


n2 ¼ c2


v 2
¼ c2k 2


!2
¼ 1 �


!2
p


!2


is negative and the wave number k is considered to be complex with


k ¼ k0 � i�:


In this case, electromagnetic waves incident on the plasma will be attenuated within the


plasma, or if � is large enough, will be reflected at the plasma surface.


The electric field of the wave E ¼ E0 e ið!t�kzÞ becomes E ¼ E0e��z eið!t�k zÞ and is


reduced to E0e�1 when z ¼ 1=� ¼ � the penetration depth. When � k0, the penetration
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is extremely small and


k 2 ! ��2 ¼ 1 � !p


!2


� !2


c2


so that


�2 ¼
!2


p


c2
1 � !2


!2
p


 !


and


� ¼ 1


�
¼ c


!p


1 � !2


!2
p


 !�1=2


When


!� !p; � � c=!p


P – Compressed plasma
B – Azumuthal including lines
l – Axial current


B
P


l


l


Figure 8.11 The pinch effect. A plasma is formed when a large electrical current I is discharged
along the axis of a cylindrical tube of gas. The azimuthal magnetic field lines compress the plasma
and when the conductivity of the plasma is very high the penetration of the field lines into the
plasma is very small
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On a laboratory scale number densities of the order ne � 10�6 –10�10 m�3 are produced


with electron plasma frequencies in the range !p � 6 � 1010 –6 � 1012 rad s�1, several


orders below that of visible light.


For these values of !p, electromagnetic waves have a penetration depth


� � c


!p


� 5 � 10�3-- 5 � 10�5 m


The analysis above provides an experimental method of measuring the electron number


density of a plasma using electromagnetic waves as a probe. The angular frequency of the


transmitted wave is varied until propagation no longer occurs and a reflected wave is


detected.


The rejection of magnetic fields by a plasma is exploited in laboratory experiments on


controlled thermonuclear fusion. In these a strong magnetic induction B is used as the


confining mechanism to keep the plasma from the walls of its containing vessel. The


magnetic energy per unit volume is given by B2=2� and this has the dimensions of a


pressure which opposes and often exceeds that of the hot ionized gas.


The well-known ‘pinch effect’, Figure 8.11, results when a large current is discharged


along the axis of gas contained in a cylindrical tube. The current ionizes the gas and its


azimuthal field compresses the plasma in the radial direction towards the axis, increasing


its temperature even further. Typical magnitudes in such an experiment are T � 108 K and


n e � 1021 m�3. This corresponds to a pressure of � 14 atmospheres which requires a


discharge current � 103R A where R m is the radius of the cylinder.


Electromagnetic Waves in the Ionosphere


The simple expression


n2 ¼ 1 �
!2


p


!2
ð8:9Þ


for the index of refraction of a plasma is modified by the presence of an external static


magnetic field. This situation exists in the ionosphere which consists of bands of low


density ionized gas approximately 300 km above the earth and located within the earth’s


dipole field of magnetic induction B0.


A charged particle of velocity v in such a field experiences an electric field E ¼ v � B0


and when v is in the plane perpendicular to B0 it rotates around the field line with an


angular frequency ! ¼ eB0=m, where e is the particle charge and m is its mass. This is most


easily seen by considering the force mv 2=r in a circular orbit balancing the electric force


"E ¼ e � v � B0.


From mv 2=r ¼ evB0


we have


v


r
¼ eB0


m
¼ 2�


v


2�r


� 
¼ 2�f ¼ !B


where f is the frequency of precession or the number of orbits per second made by the


particle.
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Figure 8.12 shows the direction of motion for positive and negative charges around a


magnetic field line which points upwards out of the paper.


We consider the simplest case of electromagnetic wave propagation along the direction


B0 and assume that


� The amplitude of electron motion is small.


� The value of n e is low enough to neglect collisional damping.


� The magnetic induction B0  the magnetic induction of the electromagnetic wave.


If we consider the electric field to be that of a circularly polarized transverse


electromagnetic wave, then we may write E ¼ Eðr1 þ ir2Þ, where r1 and r2 are


orthogonal (mutually perpendicular) unit vectors and B0 is along the r3 direction.


The equation of motion for an electron of velocity v is given by


m
dv


dt
¼ E ei!t þ ev � B0


If we take the steady state electron velocity to be of the form


v ¼ vðr1 þ ir2Þ ei!t


we find that


v ¼ �ie


mð!� !BÞ
E


satisfies the equation of motion


This means that the electron precessing around B0 with an angular frequency !B is


driven by a rotating electric field of effective frequency !� !B depending on the sign of


the circular polarization.


Due to the electronic motion there is a current density in the plasma given by


J ¼ n eev ¼ �in ee2


mð!� !BÞ
E:


L i L e


+ –


B (upwards)


Figure 8.12 Charged particles of velocity v perpendicular to a magnetic field line B are bound to
the field line and orbit around it due to the Lorentz force eðv � BÞ. The radius L of the orbit, the
Larmor radius, is given by L ¼ mv=eB and the orbital Larmor frequency is !B ¼ eB=m rad s�1
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In Maxwell’s equation


r� H ¼ @


@t
D þ J ð8:5Þ


we may write, in the absence of J, D ¼ "0E but the presence of J will modify this and the


right hand side of equation (8.5) becomes


@


@t
D þ J ¼ @


@t
"0E e i!t � in ee2


mð!� !BÞ
E


¼ i!"0E � in ee2


m"0ð!� !BÞ
"0E


¼ i!"0 1 �
!2


p


!ð!� !BÞ


 !
E ¼ i!"E


giving


"


"0


¼ " r ¼ n2
� ¼ 1 �


!2
p


!ð!� !BÞ


 !


We see that the ionosphere is birefringent with two different values of the refractive


index, nþ for the right handed circularly polarized wave and n� for the left handed incident


polarization. These waves propagate at different velocities and their reception by the


ionosphere will depend on their polarization. In its lower D layer the ionosphere has an


electron number density n e � 109 m�3 with !p � 106 rad s�1 and for the upper F2 layer,


n e � 1012 m�3 with !p � 107 rad s�1. Taking the value of the earth’s magnetic field as


3 � 10�5 T; that is (0.3 G) gives an electron precession frequency !B � 6 � 106 rad s�1.


Figure 8.13 shows the behaviour of n2
þ and n2


� versus !=!B give for the fixed value of


!p=!B ¼ 2. Other values of !p=!B give curves of a similar shape. In the wide frequency


intervals where n2
þ and n2


� have opposite signs (positive or negative), one state of the


circular polarization cannot propagate in the plasma and will be reflected when it strikes


the ionosphere. The other wave will be partially transmitted. So, when a linearly polarized


wave with !�!B in Figure 8.14 is incident on the ionosphere, the reflected wave will be


elliptically polarized. The electron number densities in the ionosphere are measured by


varying the frequency ! of the transmitted electromagnetic waves until reflection occurs.


This method is similar to that used on the laboratory plasmas of the previous section.


However, the value of n e varies in an ionospheric layer. It is found to increase with height


until it reaches a maximum, only to fall off rapidly with a further increase in height. The


height for a particular value of n e is measured by timing the interval between the trans-


mitted and reflected wave.


The analysis above explains the main features of radio reception which are:


� Very high frequencies (VHF) are received over relatively short distances only.


� Medium wave (MW) reception is possible over longer distances and improves at night.


� Short wave (SW) reception is possible over very long distances.
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Very high frequencies are greater than !p for both the D and F2 layers; the waves


propagate through both layers without reflection (Figure 8.15). The D layer has a plasma


frequency �300 kHz; that is, a wavelength of � 1 km and medium waves with 200 <

 < 600 km are attenuated within it. However, the electron number density in the D


layer, sustained by ionizing radiation during the day, drops very sharply after sunset and


the medium waves are transmitted to the higher F2 layer where they are reflected


and received over longer distances. The D layer is transparent to short waves, 10 <

 < 80 m, but these are reflected by the layer F2 allowing long-distance radio reception


around the earth.
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Figure 8.13 The ionospheric plasma is birefringent to electromagnetic waves with different values
of the refractive index nþ for right handed circularly polarized waves and n� for left handed
circularly polarized waves. These values depend upon the ratio of the plasma frequency ! p to the
Larmor frequency !B. Graphs of n2


þ and n2
� are shown for a fixed value !p=!B ¼ 2 with a horizontal


axis !=!B, where ! is the frequency of the propagating e.m. wave
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Figure 8.14 (a) The number density n e of a plasma (in this case the ionosphere) may be measured
by a probing electromagnetic wave, the frequency of which is varied until reflection occurs. The time
of the wave from transmission to reception is a measure of the height at which reflection occurs. The
variation of number density n e with height h in an ionospheric layer is shown in (b)
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Figure 8.15 Electron number densities in the ionosphere layers D and F2 govern the pattern of
radio reception. Very high frequencies (VHF) penetrate both layers and are received only over short
distances Medium waves (MW) are reflected at the D layer during the daytime but are received over
longer distances at night when n e of the D layer drops and medium waves proceed to the F2 layer
before reflection. Short waves (SW) penetrate the D layer to be reflected at the F2 layer and are
received over very long distances
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Problem 8.1
The solutions to the e.m. wave equations are given in Figure 8.3 as


Ex ¼ E 0 sin
2�




ðvt � zÞ


and


H y ¼ H 0 sin
2�




ðvt � zÞ


Use equations (8.1a) and (8.2a) to prove that they have the same wavelength and phase as shown in


figure.


Problem 8.2
Show that the concept of B2=2� (magnetic energy per unit volume) as a magnetic pressure accounts


for the fact that two parallel wires carrying currents in the same direction are forced together and that


reversing one current will force them apart. (Consider a point midway between the two wires.) Show


that it also explains the motion of a conductor carrying a current which is situated in a steady


externally applied magnetic field.


Problem 8.3
At a distance r from a charge e on a particle of mass m the electric field value is E ¼ e=4�" 0r 2.


Show by integrating the electrostatic energy density over the spherical volume of radius a to infinity


and equating it to the value mc2 that the ‘classical’ radius of the electron is given by


a ¼ 1:41 � 10�15 m


Problem 8.4
The rate of generation of heat in a long cylindrical wire carrying a current I is I 2R, where R is the


resistance of the wire. Show that this joule heating can be described in terms of the flow of energy


into the wire from surrounding space and is equal to the product of the Poynting vector and the


surface area of the wire.


Problem 8.5
Show that when a current is increasing in a long uniformly wound solenoid of coil radius r the total


inward energy flow rate over a length l (the Poynting vector times the surface area 2�rl) gives the


time rate of change of the magnetic energy stored in that length of the solenoid.


Problem 8.6
The plane polarized electromagnetic wave (E x, Hy) of this chapter travels in free space. Show that its


Poynting vector (energy flow in watts per squaremetre) is given by


S ¼ ExH y ¼ cð1
2
" 0E 2


x þ 1
2
� 0H 2


y Þ ¼ c" 0E 2
x
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where c is the velocity of light. The intensity in such a wave is given by


I ¼ S av ¼ c" 0E 2 ¼ 1
2


c" 0E 2
max


Show that


S ¼ 1:327 � 10�3 E 2
max


Emax ¼ 27:45 S
1=2


V m�1


H max ¼ 7:3 � 10�2 S
1=2


A m�1


Problem 8.7
A light pulse from a ruby laser consists of a linearly polarized wave train of constant amplitude


lasting for 10�4 s and carrying energy of 0.3 J. The diameter of the circular cross section of the


beam is 5�10�3 m. Use the results of Problem 8.6 to calculate the energy density in the beam to


show that the root mean square value of the electric field in the wave is


2:4 � 10 5 V m�1


Problem 8.8
One square metre of the earth’s surface is illuminated by the sun at normal incidence by an energy


flux of 1.35 kW. Show that the amplitude of the electric field at the earth’s surface is 1010 V m�1


and that the associated magnetic field in the wave has an amplitude of 2.7 A m�1 (See Problem 8.6).


The electric field energy density 1
2
"E 2 has the dimensions of a pressure. Calculate the radiation


pressure of sunlight upon the earth.


Problem 8.9
If the total power lost by the sun is equal to the power received per unit area of the earth’s surface


multiplied by the surface area of a sphere of radius equal to the earth sun distance (15�10 7 km),


show that the mass per second converted to radiant energy and lost by the sun is 4:2 � 109 kg. (See


Problem 8.6.)


Problem 8.10
A radio station radiates an average power of 105 W uniformly over a hemisphere concentric with the


station. Find the magnitude of the Poynting vector and the amplitude of the electric and magnetic


fields of the plane electromagnetic wave at a point 10 km from the station. (See Problem 8.6)


Problem 8.11
A plane polarized electromagnetic wave propagates along a transmission line consisting of two


parallel strips of a perfect conductor containing a medium of permeability � and permittivity ". A


section of one cubic metre in the figure shows the appropriate field vectors. The electric field Ex


generates equal but opposite surface charges on the conductors of magnitude "Ex C m2. The motion


of these surface charges in the direction of wave propagation gives rise to a surface current (as in the


discussion associated with Figure 7.1). Show that the magnitude of this current is Hy and that the


characteristic impedance of the transmission line is


Ex


H y


¼
ffiffiffi
�


"


r
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1m


1m


1m


z


Hy


Ex


Problem 8.12
Show that equation (8.6) is dimensionally of the form (per unit area)


V ¼ L
d I


d t


where V is a voltage, L is an inductance and I is a current.


Problem 8.13
Show that when a group of electromagnetic waves of nearly equal frequencies propagates in a


conducting medium the group velocity is twice the wave velocity.


Problem 8.14
A medium has a conductivity � ¼ 10�1 S m�1 and a relative permittivity " r ¼ 50, which is constant


with frequency. If the relative permeability � r ¼ 1, is the medium a conductor or a dielectric at a


frequency of (a) 50 kHz, and (b) 104 MHz?


½" 0 ¼ ð36�� 10 9Þ�1
F m�1; �0 ¼ 4�� 10�7 H m�1�


Answer: (a) �=!" ¼ 720 (conductor)


ðbÞ �=!" ¼ 3:6 � 10�3 (dielectric):


Problem 8.15
The electrical properties of the Atlantic Ocean are given by


" r ¼ 81; � r ¼ 1; � ¼ 4:3 S m�1


Show that it is a conductor up to a frequency of about 10 MHz. What is the longest electromagnetic


wavelength you would expect to propagate under water?
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Problem 8.16
Show that when a plane electromagnetic wave travelling in air is reflected normally from a plane


conducting surface the transmitted magnetic field value Ht � 2H i, and that a magnetic standing


wave exists in air with a very large standing wave ratio. If the wave is travelling in a conductor and is


reflected normally from a plane conductor–air interface, show that Et � 2Ei. Show that these two


cases are respectively analogous to a short-circuited and an open-circuited transmission line.


Problem 8.17
Show that in a conductor the average value of the Poynting vector is given by


S av ¼ 1
2


E0H0 cos 45 �


¼ 1
2


H 2
0 � ðreal part of Z cÞW m2


where E0 and H0 are the peak field values. A plane 1000 MHz wave travelling in air with E0 ¼
1 V m�1 is incident normally on a large copper sheet. Show firstly that the real part of the conductor


impedance is 8.2�10�3� and then (remembering from Problem 8.16 that H0 doubles in the


conductor) show that the average power absorbed by the copper per square metre is 1.6�10�7 W.


Problem 8.18
For a good conductor " r ¼ � r ¼ 1. Show that when an electromagnetic wave is reflected normally


from such a conducting surface its fractional loss of energy (1–reflection coefficient I r) is


�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8!"=�


p
. Note that the ratio of the displacement current density to the conduction current density


is therefore a direct measure of the reflectivity of the surface.


Problem 8.19
Using the value of the Poynting vector in the conductor from Problem 8.17, show that the ratio of


this value to the value of the Poynting vector in air is �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8!"=�


p
, as expected from Problem 8.18.


Problem 8.20
The electromagnetic wave of Problems 8.18 and 8.19 has electric and magnetic field magnitudes in


the conductor given by


Ex ¼ A e�kz e ið!t�kzÞ


and


H y ¼ A
�


!�


� �1=2


e�kz e ið!t�kzÞ e�i�=4


where k ¼ ð!��=2Þ 1=2
.


Show that the average value of the Poynting vector in the conductor is given by


S av ¼ 1
2


A2 �


2!�


� � 1=2


e�2kz ðW m2Þ


This is the power absorbed per unit area by the conductor. We know, however, that the wave
propagates only a distance of the order of the skin depth, so that this power is rapidly transformed.
The rate at which it changes with distance is given by @S av=@z, which gives the energy transformed
per unit volume in unit time. Show that this quantity is equal to the conductivity � times the square
of the mean value of the electric field vector E, that is, the joule heating from currents flowing in the
surface of the conductor down to a depth of the order of the skin depth.
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Problem 8.21
Show that when light travelling in free space is normally incident on the surface of a dielectric of


refractive index n the reflected intensity


I r ¼
E r


E i


� � 2


¼ 1 � n


1 þ n


� �2


and the transmitted intensity


I t ¼
Z iE


2
t


Z tE
2
i


¼ 4n


ð1 þ nÞ 2


(Note I r þ I t ¼ 1.)


Problem 8.22
Show that if the medium of Problem 8.21 is glass (n ¼ 1:5) then I r ¼ 4% and I t ¼ 96%. If an


electromagnetic wave of 100 MHz is normally incident on water (" r ¼ 81) show that I r ¼ 65% and


I t ¼ 35%.


Problem 8.23
Light passes normally through a glass plate suffering only one air to glass and one glass to air


reflection. What is the loss of intensity?


Problem 8.24
A radiating antenna in simplified form is just a length x0 of wire in which an oscillating current is


maintained. The expression for the radiating power is that used on p. 47 for an oscillating electron


P ¼ dE


dt
¼ q2!4x 2


0


12�" 0c 3


where q is the electron charge and ! is the oscillation frequency. The current I in the antenna may be


written I0 ¼ !q. If P ¼ 1
2


RI 2
0 show that the radiation resistance of the antenna is given by


R ¼ 2�


3


ffiffiffiffiffiffi
� 0


" 0


r
x0






�  2


¼ 787
x0






�  2


�


where 
 is the radiated wavelength (an expression valid for 
 x0).
If the antenna is 30 m long and transmits at a frequency of 5�10 5 H with a root mean square


current of 20 A, show that its radiation resistance is 1:97� and that the power radiated is 400 W.
(Verify that 
 x0.)


Summary of Important Results


Dielectric; � and "ð� ¼ 0Þ
Wave equation


@ 2Ex


@z2
¼ �"


@ 2Ex


@t 2
v 2 ¼ 1


�"


� �
@ 2Hy


@z2
¼ �"


@ 2Hy


@t 2
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Impedance


Ex


Hy


¼
ffiffiffi
�


"


r
ð376:7� for free spaceÞ


Energy density 1
2
"E 2


x þ 1
2
�H 2


y


Mean energy flow ¼ Intensity ¼ S ¼ vðmean energy densityÞ
¼ vð1


2
"E 2


x þ 1
2
�H 2


y Þaverage


¼ v"E 2
x ¼ 1


2
v"E 2


xðmaxÞ


Conductor; � " and �


Add diffusion equation to wave equation for loss effects from �


@ 2E 2
x


@z2
¼ �"


@ 2E 2
x


@t 2
þ ��


@Ex


@t


giving


Ex ¼ E0 e�kz eið!t�kzÞ


where


k 2 ¼ !��=2


Skin Depth


� ¼ 1


k
giving Ex ¼ E0 e�1


Criterion for conductor/dielectric behaviour is ratio


conduction current


displacement current
¼ �


!"
(note frequency dependence)


Impedance Zc (conductor)


Z c ¼
1 þ iffiffiffi


2
p !�


�


� 1=2


with magnitude Zc ¼ 376:6
ffiffiffiffiffiffiffiffiffiffiffiffi
� r=" r


p ffiffiffiffiffiffiffiffiffiffiffi
!"=�


p
ohms
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Reflection and Transmission Coefficients (normal incidence),


R ¼ E r


E i


¼ Z2 � Z1


Z2 þ Z1


ðE’s and Z’s may be complexÞ


T ¼ E t


E i


¼ 2Z2


Z2 þ Z1


Fresnel’s Equations (dielectrics)


Rk ¼
tan ð�� �Þ
tan ð�þ �Þ ; Tk ¼


4 sin� cos �


sin 2�þ sin 2�


R? ¼ sin ð�� �Þ
sin ð�þ �Þ ; T? ¼ 2 sin� cos �


sin ð�þ �Þ


Refractive Index


n ¼ c


v
¼ Z ðfree spaceÞ


Z ðdielectricÞ


Electromagnetic Waves in a Plasma
Low frequency waves propagate, but a high frequency wave E0 e i!t is attenuated or


reflected when ! < !p the plasma frequency, where !2
p ¼ n ee2="0m e. (n e is the electron


number density.)


The plasma has a refractive index n, where


n2 ¼ 1 � !2
p=!


2


when !p  !0, the wave amplitude E0 ! E0e�1 in a skin depth distance


� ¼ c


!p


1 � !2


!2
p


 !�1=2


� c


!p
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9


Waves in More than
One Dimension


Plane Wave Representation in Two and Three Dimensions


Figure 9.1 shows that in two dimensions waves of velocity c may be represented by lines of


constant phase propagating in a direction k which is normal to each line, where the


magnitude of k is the wave number k ¼ 2�=�.


The direction cosines of k are given by


l ¼ k1


k
; m ¼ k2


k
where k 2 ¼ k 2


1 þ k 2
2


and any point rðx; yÞ on the line of constant phase satisfies the equation


lx þ my ¼ p ¼ ct


where p is the perpendicular distance from the line to the origin. The displacements at all


points rðx; yÞ on a given line are in phase and the phase difference � between the origin and


a given line is


� ¼ 2�


�
(path difference) ¼ 2�


�
p ¼ k � r ¼ k1x þ k2y


¼ kp


Hence, the bracket ð!t � �Þ ¼ ð!t � kxÞ used in a one dimensional wave is replaced by


ð!t � k � rÞ in waves of more than one dimension, e.g. we shall use the exponential


expression


eið!t�k�rÞ


In three dimensions all points rðx; y; zÞ in a given wavefront will lie on planes of constant


phase satisfying the equation


lx þ my þ nz ¼ p ¼ ct
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where the vector k which is normal to the plane and in the direction of propagation has


direction cosines


l ¼ k1


k
; m ¼ k2


k
; n ¼ k3


k


(so that k 2 ¼ k 2
1 þ k 2


2 þ k 2
3Þ and the perpendicular distance p is given by


kp ¼ k � r ¼ k1x þ k2y þ k3z


Wave Equation in Two Dimensions


We shall consider waves propagating on a stretched plane membrane of negligible


thickness having a mass � per unit area and stretched under a uniform tension T. This


means that if a line of unit length is drawn in the surface of the membrane, then the


material on one side of this line exerts a force T (per unit length) on the material on the


other side in a direction perpendicular to that of the line.


If the equilibrium position of the membrane is the xy plane the vibration displacements


perpendicular to this plane will be given by z where z depends on the position x, y. In


Figure 9.2a where the small rectangular element ABCD of sides �x and �y is vibrating,


forces T�x and T�y are shown acting on the sides in directions which tend to restore the


element to its equilibrium position.


In deriving the equation for waves on a string we saw that the tension T along a curved


element of string of length dx produced a force perpendicular to x of


T
@ 2y


@x2
dx


y k2


k2k1


k


k


l =


m =


k ⋅ r = k1x  + k2y = kp


x


p
lx + my = p = ct


r ( x  ⋅ y )
λ
2


k1


k Crest
Trough


Figure 9.1 Crests and troughs of a two-dimensional plane wave propagating in a general direction
k (direction cosines l and m). The wave is specified by lx þ my ¼ p ¼ ct, where p is its perpendicular
distance from the origin, travelled in a time t at a velocity c
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where y was the perpendicular displacement. Here in Figure 9.2b by exactly similar


arguments we see that a force T�y acting on a membrane element of length �x produces a


force


T�y
@ 2z


@x2
�x;


where z is the perpendicular displacement, whilst another force T�x acting on a membrane


element of length �y produces a force


T�x
@ 2z


@y2
�y


The sum of these restoring forces which act in the z-direction is equal to the mass of the


element � �x �y times its perpendicular acceleration in the z-direction, so that


T
@ 2z


@x2
�x �y þ T


@ 2z


@y2
�x �y ¼ � �x �y


@ 2y


@t 2


giving the wave equation in two dimensions as


@ 2z


@x2
þ @ 2z


@y2
¼ �


T


@ 2z


@t 2
¼ 1


c2


@ 2z


@t 2


where


c2 ¼ T


�


The displacement of waves propagating on this membrane will be given by


z ¼ A e ið!t�k�rÞ ¼ A e i½!t�ðk 1xþk 2yÞ�


where


k 2 ¼ k 2
1 þ k 2


2


y


T  δ x
T  δ x


T  δ x


δ x
δ y


T  δ x


T  δ y


T  δ y


T  δ y


T  δ yz


x
(a) (b)


Figure 9.2 Rectangular element of a uniform membrane vibrating in the z-direction subject to one
restoring force, T�x, along its sides of length �y and another, T�y, along its sides of length �x
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The reader should verify that this expression for z is indeed a solution to the two-


dimensional wave equation when ! ¼ ck.


(Problem 9.1)


Wave Guides


Reflection of a 2D Wave at Rigid Boundaries


Let us first consider a 2D wave propagating in a vector direction kðk1; k2Þ in the xy plane


along a membrane of width b stretched under a tension T between two long rigid rods


which present an infinite impedance to the wave.


We see from Figure 9.3 that upon reflection from the line y ¼ b the component k1


remains unaffected whilst k2 is reversed to �k2. Reflection at y ¼ 0 leaves k1 unaffected


whilst �k2 is reversed to its original value k2. The wave system on the membrane will


therefore be given by the superposition of the incident and reflected waves; that is, by


z ¼ A1 e i½!t�ðk 1xþk 2yÞ� þ A2 e i½!t�ðk 1x�k 2yÞ�


subject to the boundary conditions that


z ¼ 0 at y ¼ 0 and y ¼ b


the positions of the frame of infinite impedance.


The condition z ¼ 0 at y ¼ 0 requires


A2 ¼ �A1


and z ¼ 0 at y ¼ b gives


sin k2b ¼ 0


infinite
impedance


infinite
impedance


y = 0


y = b


k1


k1


k1


k2


k2


−k2


k


k


k


x


Figure 9.3 Propagation of a two-dimensional wave along a stretched membrane with infinite
impedances at y ¼ 0 and y ¼ b giving reversal of k 2 at each reflection
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or


k2 ¼ n�


b


(Problem 9.2)


With these values of A2 and k2 the displacement of the wave system is given by the real


part of z, i.e.


z ¼ þ 2A1 sin k2y sin ð!t � k1xÞ


which represents a wave travelling along the x direction with a phase velocity


v p ¼ !


k1


¼ k


k1


� �
v


where v, the velocity on an infinitely wide membrane, is given by


v ¼ !


k
which is < v p


because


k 2 ¼ k 2
1 þ k 2


2


Now


k 2 ¼ k 2
1 þ


n2�2


b2


so


k1 ¼ k 2 � n2�2


b2


� �1=2


¼ !2


v 2
� n2�2


b2


� �1=2


and the group velocity for the wave in the x direction


v g ¼ @!


@k1


¼ k1


!
v 2 ¼ k1


k


� �
v


giving the product


v pv g ¼ v 2


Since k1 must be real for the wave to propagate we have, from


k 2
1 ¼ k 2 � n2�2


b2


the condition that


k 2 ¼ !2


v 2
	 n2�2


b2
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that is


!	 n�v


b


or


�	 nv


2b
;


where n defines the mode number in the y direction. Thus, only waves of certain


frequencies � are allowed to propagate along the membrane which acts as a wave guide.


There is a cut-off frequency n�v=b for each mode of number n and the wave guide acts as


a frequency filter (recall the discussion on similar behaviour in wave propagation on the


loaded string in Chapter 4). The presence of the sin k2y term in the expression for the


displacement z shows that the amplitude varies across the transverse y direction as shown in


Figure 9.4 for the mode values n ¼ 1; 2; 3. Thus, along any direction in which the waves


meet rigid boundaries a standing wave system will be set up analogous to that on a string of


fixed length and we shall discuss the implication of this in the section on normal modes and


the method of separation of variables.


Wave guides are used for all wave systems, particularly in those with acoustical and


electromagnetic applications. Fibre optics is based on wave guide principles, but the major


use of wave guides has been with electromagnetic waves in telecommunications. Here the


reflecting surfaces are the sides of a copper tube of circular or rectangular cross section.


Note that in this case the free space velocity becomes the velocity of light


c ¼ !


k
< v p


the phase velocity, but the relation v pv g ¼ c2 ensures that energy in the wave always


travels with a group velocity v g < c.


n = 2n = 1


y = 0


y = b


n = 3 x


Figure 9.4 Variation of amplitude with y-direction for two-dimensional wave propagating along the
membrane of Figure 9.3. Normal modes (n ¼ 1; 2 and 3 shown) are set up along any axis bounded by
infinite impedances
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(Problems 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11)


Normal Modes and the Method of Separation of Variables


We have just seen that when waves propagate in more than one dimension a standing wave


system will be set up along any axis which is bounded by infinite impedances.


In Chapter 5 we found that standing waves could exist on a string of fixed length l where


the displacement was of the form


y ¼ A
sin


cos


�
kx


sin


cos


�
!nt;


where A is constant and where
sin


cos


�
means that either solution may be used to


fit the boundary conditions in space and time. When the string is fixed at both ends, the


condition y ¼ 0 at x ¼ 0 removes the cos kx solution, and y ¼ 0 at x ¼ l requires knl ¼ n�
or kn ¼ n�=l ¼ 2�=�n, giving l ¼ n�n=2. Since the wave velocity c ¼ �n�n, this permits


frequencies !n ¼ 2��n ¼ �nc=l, defined as normal modes of vibration or eigenfrequen-


cies.


We can obtain this solution in a way which allows us to extend the method to waves in


more than one dimension. We have seen that the wave equation


@ 2�


@x2
¼ 1


c2


@ 2�


@t 2


has a solution which is the product of two terms, one a function of x only and the other a


function of t only.


Let us write � ¼ XðxÞTðtÞ and apply the method known as separation of variables.


The wave equation then becomes


@ 2X


@x2
� T ¼ 1


c2
X
@ 2T


@t 2


or


XxxT ¼ 1


c2
XTtt


where the double subscript refers to double differentiation with respect to the variables.


Dividing by � ¼ XðxÞTðtÞ we have


Xxx


X
¼ 1


c2


Ttt


T


where the left-hand side depends on x only and the right-hand side depends on t only.


However, both x and t are independent variables and the equality between both sides can


only be true when both sides are independent of x and t and are equal to a constant, which


we shall take, for convenience, as �k 2. Thus


Xxx


X
¼ �k 2; giving Xxx þ k 2X ¼ 0
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and


1


c2


Ttt


T
¼ �k 2; giving Ttt þ c2k 2T ¼ 0


XðxÞ is therefore of the form e
ikx and TðtÞ is of the form e
ickt, so that � ¼ A e
ikx e
ickt,


where A is constant, and we choose a particular solution in a form already familiar to us by


writing


� ¼ A eiðckt�kxÞ


¼ A eið!t�kxÞ ;


where ! ¼ ck, or we can write


� ¼ A
sin


cos


�
kx


sin


cos


�
ckt


as above.


Two-Dimensional Case


In extending this method to waves in two dimensions we consider the wave equation in


the form


@ 2�


@x2
þ @ 2�


@y2
¼ 1


c2


@ 2�


@t 2


and we write � ¼ XðxÞYðyÞTðtÞ, where YðyÞ is a function of y only.


Differentiating twice and dividing by � ¼ XY T gives


Xxx


X
þ Yyy


Y
¼ 1


c2


Ttt


T


where the left-hand side depends on x and y only and the right-hand side depends on t only.


Since x, y and t are independent variables each side must be equal to a constant, �k 2 say.


This means that the left-hand side terms in x and y differ by only a constant for all x and y,


so that each term is itself equal to a constant. Thus we can write


Xxx


X
¼ �k 2


1;
Yyy


Y
¼ �k 2


2


and


1


c2


Ttt


T
¼ �ðk 2


1 þ k 2
2Þ ¼ �k 2
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giving


Xxx þ k 2
1X ¼ 0


Yyy þ k 2
2Y ¼ 0


Ttt þ c2k 2T ¼ 0


or


� ¼ A e
ik 1x e
ik 2y e
ickt


where k 2 ¼ k 2
1 þ k 2


2. Typically we may write


� ¼ A
sin


cos


�
k1x


sin


cos


�
k2y


sin


cos


�
ckt:


Three-Dimensional Case


The three-dimensional treatment is merely a further extension. The wave equation is


@ 2�


@x2
þ @ 2�


@y2
þ @ 2�


@z2
¼ 1


c2


@ 2�


@t 2


with a solution


� ¼ XðxÞYðyÞZðzÞTðtÞ
yielding


� ¼ A
sin


cos


�
k1x


sin


cos


�
k2y


sin


cos


�
k3z


sin


cos


�
ckt;


where k 2
1 þ k 2


2 þ k 2
3 ¼ k 2.


Using vector notation we may write


� ¼ A eið!t�k�rÞ; where k � r ¼ k1x þ k2y þ k3z


Normal Modes in Two Dimensions on a Rectangular Membrane


Suppose waves proceed in a general direction k on the rectangular membrane of sides a


and b shown in Figure 9.5. Each dotted wave line is separated by a distance �=2 and a


standing wave system will exist whenever a ¼ n1AA 0 and b ¼ n2BB 0, where n1 and n2 are


integers.


But


AA 0 ¼ �


2 cos
¼ �


2


k


k1


¼ �


2


2�


�


1


k1


¼ �


k1
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so that


a ¼ n1�


k1


and k1 ¼ n1�


a
:


Similarly


k2 ¼ n2�


b


Hence


k 2 ¼ k 2
1 þ k 2


2 ¼ 4�2


�2
¼ �2 n2


1


a2
þ n2


2


b2


� �


or


2


�
¼


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2


1


a2
þ n2


2


b2


r


defining the frequency of the n1th mode on the x-axis and the n2th mode on the y-axis, that


is, the ðn1n2Þ normal mode, as


� ¼ c


2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2


1


a2
þ n2


2


b2


r
; where c2 ¼ T


�


If k is not normal to the direction of either a or b we can write the general solution for


the waves as


z ¼ A
sin


cos


�
k1x


sin


cos


�
k2y


sin


cos


�
ckt:


with the boundary conditions z ¼ 0 at x ¼ 0 and a; z ¼ 0 at y ¼ 0 and b.


k


β
α


λ
2


B


B′


B′B
b 


 =
 n


2 
B


B
′ =


 n
2λ


 / 2
 c


os
b


a  = n2 AA′ = n1λ / 2 cos a


Figure 9.5 Normal modes on a rectangular membrane in a direction k satisfying boundary
conditions of zero displacement at the edges of length a ¼ n1�=2 cos and b ¼ n 2�= 2 cos�
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The condition z ¼ 0 at x ¼ y ¼ 0 requires a sin k1x sin k2y term, and the condition z ¼ 0


at x ¼ a defines k1 ¼ n1�=a. The condition z ¼ 0 at y ¼ b gives k2 ¼ n2�=b, so that


z ¼ A sin
n1�x


a
sin


n2�y


b
sin ckt


The fundamental vibration is given by n1 ¼ 1; n2 ¼ 1, so that


� ¼


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1


a2
þ 1


b2


� �
T


4�


s


In the general mode ðn1n2Þ zero displacement or nodal lines occur at


x ¼ 0;
a


n1


;
2a


n1


; . . . a


and


y ¼ 0;
b


n2


;
2b


n2


; . . . b


Some of these normal modes are shown in Figure 9.6, where the shaded and plain areas


have opposite displacements as shown.


(3,2)


(1,1)


(2,1)


(3,3) (2,4)


(1,1) (2,1) (3,1)


(3,1)


Figure 9.6 Some normal modes on a rectangular membrane with shaded and clear sections having
opposite sinusoidal displacements as indicated
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The complete solution for a general displacement would be the sum of individual normal


modes, as with the simpler case of waves on a string (see the chapter on Fourier Series)


where boundary conditions of space and time would have to be met. Several modes of


different values ðn1n2Þ may have the same frequency, e.g. in a square membrane the modes


(4,7) (7,4) (1,8) and (8,1) all have equal frequencies. If the membrane is rectangular and


a ¼ 3b, modes (3,3) and (9,1) have equal frequencies.


These modes are then said to be degenerate, a term used in describing equal energy


levels for electrons in an atom which are described by different quantum numbers.


Normal Modes in Three Dimensions


In three dimensions a normal mode is described by the numbers n1; n2; n3, with a


frequency


� ¼ c


2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2


1


l2
1


þ n2
2


l2
2


þ n2
3


l2
3


s
; ð9:1Þ


where l1; l2 and l3 are the lengths of the sides of the rectangular enclosure. If we now form a


rectangular lattice with the x-, y- and z-axes marked off in units of


c


2l1


;
c


2l2


and
c


2l3


respectively (Figure 9.7), we can consider a vector of components n1 units in the


x-direction, n2 units in the y-direction and n3 units in the z-direction to have a length


� ¼ c


2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2


1


l2
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Figure 9.7 Lattice of rectangular cells in frequency space. The length of the vector joining the
origin to any cell corner is the value of the frequency of an allowed normal mode. The vector
direction gives the propagation direction of that particular mode
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Each frequency may thus be represented by a line joining the origin to a point


cn1=2l1; cn2=2l2; cn3=2l3 in the rectangular lattice.


The length of the line gives the magnitude of the frequency, and the vector direction


gives the direction of the standing waves.


Each point will be at the corner of a rectangular unit cell of sides c=2l1; c=2l2 and c=2l3


with a volume c3=8l1l2l3. There are as many cells as points (i.e. as frequencies) since each


cell has eight points at its corners and each point serves as a corner to eight cells.


A very important question now arises: how many normal modes (stationary states in


quantum mechanics) can exist in the frequency range � to � þ d�?


The answer to this question is the total number of all those positive integers n1; n2; n3 for


which, from equation (9.1),


� 2 <
c2


4


n2
1


l2
1


þ n2
2


l2
2


þ n2
3


l2
3


� �
< ð� þ d�Þ2


This total is the number of possible points ðn1; n2; n3Þ lying in the positive octant


between two concentric spheres of radii � and � þ d�. The other octants will merely repeat


the positive octant values because the n’s appear as squared quantities.


Hence the total number of possible points or cells will be


1


8


(volume of spherical shell)


volume of cell


¼ 4��2 d�


8
� 8l1l2l3


c3


¼ 4�l1l2l3 �
� 2 d�


c3


so that the number of possible normal modes in the frequency range � to � þ d� per unit


volume of the enclosure


¼ 4�� 2 d�


c3


Note that this result, per unit volume of the enclosure, is independent of any particular


system; we shall consider two very important applications.


Frequency Distribution of Energy Radiated from a Hot Body.
Planck’s Law


The electromagnetic energy radiated from a hot body at temperature T in the small


frequency interval � to � þ d� may be written E� d�. If this quantity is measured


experimentally over a wide range of � a curve T1 in Figure 9.8 will result. The general


shape of the curve is independent of the temperature, but as T is increased the maximum of


the curve increases and shifts towards a higher frequency.


The early attempts to describe the shape of this curve were based on two results we have


already used.
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In the chapter on coupled oscillations we associated normal modes with ‘degrees of


freedom’, the number of ways in which a system could take up energy. In kinetic theory,


assigning an energy 1
2


kT to each degree of freedom of a monatomic gas at temperature T


leads to the gas law pV ¼ RT ¼ NkT where N is Avogadro’s number, k is Boltzmann’s


constant and R is the gas constant.


If we assume that each frequency radiated from a hot body is associated with the normal


mode of an oscillator with two degrees of freedom and two transverse planes of


polarization, the energy radiated per frequency interval d� may be considered as the


product of the number of normal modes or oscillators in the interval d� and an energy


contribution of kT from each oscillator for each plane of polarization. This gives


E� d� ¼ 4�� 2 d� 2kT


c3
¼ 8�� 2kT d�


c3


a result known as the Rayleigh–Jeans Law.


This, however, gives the energy density proportional to � 2 which, as the solid curve in


Figure 9.8 shows, becomes infinite at very high frequencies, a physically absurd result


known as the ultraviolet catastrophe.


The correct solution to the problem was a major advance in physics. Planck had


introduced the quantum theory, which predicted that the average energy value kT should be


replaced by the factor h�=ðeh�=kT � 1Þ, where h is Planck’s constant (the unit of action) as


shown in Problem 9.12. The experimental curve is thus accurately described by Planck’s


Radiation Law


E� d� ¼ 8�� 2


c3


h�


eh�=kT � 1
d�


ν λ


T1


T2


T2


ννE   d
Black body radiation curves
following Planck's Law (T2 > T1)


Rayleigh-
Jeans


Figure 9.8 Planck’s black body radiation curve plotted for two different temperatures T2 > T 1,
together with the curve of the classical Rayleigh--0.6-Jeans explanation leading to the ‘ultra-violet
catastrophe’
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(Problem 9.12)


Debye Theory of Specific Heats


The success of the modern theory of the specific heats of solids owes much to the work of


Debye, who considered the thermal vibrations of atoms in a solid lattice in terms of a vast


complex of standing waves over a great range of frequencies. This picture corresponds in


three dimensions to the problem of atoms spaced along a one dimensional line (Chapter 5).


In the specific heat theory each atom was allowed two transverse vibrations (perpendicular


planes of polarization) and one longitudinal vibration.


The number of possible modes or oscillations per unit volume in the frequency interval �
to � þ d� is then given by


dn ¼ 4�� 2 d�
2


c3
T


þ 1


c3
L


� �
ð9:2Þ


where cT and cL are respectively the transverse and longitudinal wave velocities.


Problem 9.12 shows that each mode has an average energy (from Planck’s Law) of
�"" ¼ h�=ðeh�=kT � 1Þ and the total energy in the frequency range � to � þ d� for a gram


atom of the solid of volume VA is then


VA�"" dn ¼ 4�VA


2


c3
T


þ 1


c3
L


� �
h� 3


eh�=kT � 1
d�


The total energy per gram atom over all permitted frequencies is then


EA ¼
ð


VA�"" dn ¼ 4�VA


2


c3
T


þ 1


c3
L


� � ð �m


0


h� 3


eh�=kT � 1
d�


where �m is the maximum frequency of the oscillations.


There are N atoms per gram atom of the solid (N is Avogadro’s number) and each atom


has three allowed oscillation modes, so an approximation to �m is found by writing the


integral of equation (9.2) for a gram atom asð
dn ¼ 3N ¼ 4�VA


2


c3
T


þ 1


c3
L


� � ð �m


0


� 2 d� ¼ 4�VA


3


2


c3
T


þ 1


c3
L


� �
� 3


m


The values of cT and cL can be calculated from the elastic constants of the solid (see


Chapter 6 on longitudinal waves) and �m can then be found.


The values of EA thus becomes


EA ¼ 9N


� 3
m


ð �m


0


h�


eh�=kT � 1
� 2 d�


and the variation of EA with the temperature T is the molar specific heat of the substance at


constant volume. The specific heat of aluminium calculated by this method is compared


with experimental results in Figure 9.9.
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(Problems 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19)


Reflection and Transmission of a Three-Dimensional Wave at a
Plane Boundary


To illustrate such an event we choose a physical system of great significance, the passage of


a light wave from air to glass. More generally, Figure 9.10 shows a plane polarized


electromagnetic wave E i incident at an angle � to the normal of the plane boundary z ¼ 0


separating two dielectrics of impedance Z1 and Z2, giving reflected and transmitted rays E r


and E t, respectively. The boundary condition requires that the tangential electric field Ex is


continuous at z ¼ 0. The propagation direction k i of E i lies wholly in the plane of the


paper ðy ¼ 0Þ but no assumptions are made about the directions of the reflected and


transmitted waves (nor about the planes of oscillation of their electric field vectors).


We write


E i ¼ A i e ið!t�k i�rÞ ¼ A i e i½!t�k iðx sin �þz cos �Þ�


E r ¼ A r e ið!t�k r�rÞ ¼ A r e i½!t�ðk r1xþk r2yþk r3zÞ�


and


E t ¼ A t e ið!t�k t�rÞ ¼ A t e i½!t�ðk t1xþk t2yþk t3zÞ�


where k rðk r1; k r2; k r3Þ and k tðk t1; k t2; k t3Þ are respectively the reflected and transmitted


propagation vectors.


Since Ex is continuous at z ¼ 0 for all x; y; t we have


A i e i½!t�k iðx sin �Þ� þ A r e i½!t�ðk r1xþk r2yÞ�


¼ A t e i½!t�ðk t1xþk t2yÞ�
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Figure 9.9 Debye theory of specific heat of solids. Experimental values versus theoretical curve for
aluminium
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an identity which is only possible if the indices of all three terms are identical; that is


!t � k ix sin � � !t � k r1x þ k r2y


� !t � k t1x þ k t2y


Equating the coefficients of x in this identity gives


k i sin � ¼ k r1 ¼ k t1


whilst equal coefficients of y give


0 ¼ k r2 ¼ k t2


The relation


k r2 ¼ k t2 ¼ 0


shows that the reflected and transmitted rays have no component in the y direction and lie


wholly in the xz plane of incidence; that is, incident reflected and transmitted (refracted)


rays are coplanar.


θ


φθ′


Et


Erkr


Z1


ki


Ei


k t


z


x Z 2


ΣEx = 0 at z = 0


Figure 9.10 Plane-polarized electromagnetic wave propagating in the plane of the paper is
represented by vector E i and is reflected as vector E r and transmitted as vector E t at a plane interface
between media of impedances Z 1 and Z2. No assumptions are made about the planes of propagation
of E r and E t. From the boundary condition that the electric field component Ex is continuous at the
plane z ¼ 0 it follows that (1) vectors E i E r and E t propagate in the same plane; (2) � ¼ � 0 (angle of
incidence¼ angle of reflection); (3) Snell’s law ðsin �= sin�Þ ¼ n 2=n1, where n is the refractive
index
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Now the magnitude


k i ¼ k r ¼
2�


�1


since both incident and reflected waves are travelling in medium Z1. Hence


k i sin � ¼ k r1


gives


k i sin � ¼ k r sin � 0


that is


� ¼ � 0


so the angle of incidence equals the angle of reflection.


The magnitude


k t ¼
2�


�2


so that


k i sin � ¼ k t1 ¼ k t sin�


gives


2�


�1


sin � ¼ 2�


�2


sin�


or


sin �


sin�
¼ �1


�2


¼ n2


n1


Refractive Index (medium 2)


Refractive Index (medium 1)


� 	


a relationship between the angles of incidence and refraction which is well known as


Snell’s Law.


Total Internal Reflection and Evanescent Waves


On p. 254 we discussed the propagation of an electromagnetic wave across the boundary


between air and a dielectric (glass, say). We now consider the reverse process where a wave


in the dielectric crosses the interface into air.


Snell’s Law still holds so we have, in Figure 9.11,


n1 sin � ¼ n2 sin�


where


n1 > n2 and n2=n1 ¼ nr < 1


Thus


sin � ¼ ðn2=n1Þ sin� ¼ nr sin�
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with � > �. Eventually a critical angle of incidence � c is reached where � ¼ 90 and


sin � ¼ n r; for � > � c, sin � > n r. For glass to air n r ¼ 1
1:5 and � c ¼ 42.


It is evident that for �	 � c no electromagnetic energy is transmitted into the rarer


medium and the incident wave is said to suffer total internal reflection.


In the reflection coefficients R jj and R? on p. 218 we may replace cos� by


ð1 � sin2 �Þ1=2 ¼ ½1 � ðsin �=n rÞ2�1=2


n2


n1


n1 > n2


n2


n1


n2


n1


n2


n1


xx


z z


z


x x


z


φ


φ
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θ


= 90°


i θc> θ i θr=θr


θr


θr


θ i


θ i


θc=θ i θc=
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Figure 9.11 When light propagates from a dense to a rare medium ðn1 > n 2Þ Snell’s Law defines
� ¼ � c as that angle of incidence for which � ¼ 90 and the refracted ray is tangential to the plane
boundary. Total internal reflection can take place but the boundary conditions still require a
transmitted wave known as the evanescent or surface wave. It propagates in the x direction but its
amplitude decays exponentially with z
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and rewrite


R jj ¼
ðn2


r � sin2 �Þ1=2 � n2
r cos �


ðn2
r � sin2 �Þ1=2 þ n2


r cos �


and


R? ¼ cos �� ðn2
r � sin2 �Þ1=2


cos �þ ðn2
r � sin2 �Þ1=2


Now for � > � c, sin � > n r and the bracketed quantities in R jj and R? are negative so


that R jj and R? are complex quantities; that is ðE rÞ jj and ðE rÞ? have a phase relation which


depends on �.
It is easily checked that the product of R and R� is unity so we have R jjR


�
jj ¼ R?R�


? ¼ 1.


This means, for both the examples of Figure 8.8, that the incident and reflected intensities


I i and I r ¼ 1. The transmitted intensity I t ¼ 0 so that no energy is carried across the


boundary.


However, if there is no transmitted wave we cannot satisfy the boundary condition


E i þ E r ¼ E t on p. 254, using only incident and reflected waves. We must therefore assert


that a transmitted wave does exist but that it cannot on the average carry energy across the


boundary.


We now examine the implications of this assertion, using Figure 9.10 above, and we


keep the notation of p. 254. This gives a transmitted electric field vector


E t ¼ A t e i½!t�ðk t1xþk t2yþk t3zÞ�


¼ A t e i½!t�k tðx sin�þz cos�Þ�


because y ¼ 0 in the xz plane, k t1 ¼ k t sin� and k t3 ¼ k t cos�. Now


cos� ¼1 � sin2 � ¼ 1 � sin2 �=n2
r


; k t cos� ¼ 
k tð1 � sin2 �=n2
r Þ


1=2


which for � > � c gives sin � > nr so that


k t cos� ¼ �ik t


sin2 �


n2
r


� 1


� �1=2


¼ �i�


We also have


k t sin� ¼ k t sin �=n r


so


E t ¼ A t e��z eið!t�k rx sin �=n rÞ


258 Waves in More than One Dimension







The alternative factor eþ�z defines an exponential growth of A t which is physically


untenable and we are left with a wave whose amplitude decays exponentially as it


penetrates the less dense medium. The disturbance travels in the x direction along the


interface and is known as a surface or evanescent wave.


It is possible to show from the expressions for R jj and R? on p. 258 that except at


� ¼ 90 the incident and the reflected electric field components for ðEÞ jj in one case and


ðEÞ? in the other, do not differ in phase by � rad and cannot therefore cancel each other


out. The continuity of the tangential component of E at the boundary therefore leaves a


component parallel to the interface which propagates as the surface wave. This effect has


been observed at optical frequencies.


Moreover, if only a very thin air gap exists between two glass blocks it is possible for


energy to flow across the gap allowing the wave to propagate in the second glass block.


This process is called frustrated total internal reflection and has its quantum mechanical


analogue in the tunnelling effect discussed on p. 431.


Problem 9.1
Show that


z ¼ A e if!t�ðk 1xþk 2yÞg


where k 2 ¼ ! 2=c2 ¼ k 2
1 þ k 2


2 is a solution of the two-dimensional wave equation


@ 2z


@x2
þ @ 2z


@y 2
¼ 1


c2


@ 2z


@t 2


Problem 9.2
Show that if the displacement of the waves on the membrane of width b of Figure 9.3 is given by the


superposition


z ¼ A1 e i½!t�ðk 1xþk 2yÞ� þ A 2 e i½!t�ðk 1x�k 2yÞ�


with the boundary conditions


z ¼ 0 at y ¼ 0 and y ¼ b


then the real part of z is


z ¼ þ2 A1 sin k 2 y sin ð!t � k 1xÞ
where


k2 ¼ n�


b


Problem 9.3
An electromagnetic wave loses negligible energy when reflected from a highly conducting surface.


With repeated reflections it may travel along a transmission line or wave guide consisting of two


parallel, infinitely conducting planes (separation a). If the wave
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θa


x = 0
plane conductor


y


k (kx ky) k (−kx ky)


Ez only


x = a
plane conductor


z


x


is plane polarized, so that only Ez exists, then the propagating direction k lies wholly in the xy plane.


The boundary conditions require that the total tangential electric field Ez is zero at the conducting


surfaces x ¼ 0 and x ¼ a. Show that the first boundary condition allows Ez to be written Ez ¼
E0ðe ik xx � e�ik xxÞ e iðk yy�!tÞ, where k x ¼ k cos � and k y ¼ k sin � and the second boundary condition


requires kx ¼ n�=a.
If �0 ¼ 2�c=!, � c ¼ 2�=k x and �g ¼ 2�=ky are the wavelengths propagating in the x and y


directions respectively show that


1


� 2
c


þ 1


�2
g


¼ 1


�2
0


We see that for n ¼ 1, kx ¼ �=a and � c ¼ 2a, and that as ! decreases and �0 increases, ky ¼ k sin �
becomes imaginary and the wave is damped. Thus, n ¼ 2ðkx ¼ 2�=aÞ gives � c ¼ a, the ‘critical


wavelength’, i.e. the longest wavelength propagated by a waveguide of separation a. Such cut-off


wavelengths and frequencies are a feature of wave propagation in periodic structures, transmission


lines and wave-guides.


Problem 9.4
Show, from equations (8.1) and (8.2), that the magnetic field in the plane-polarized electromagnetic


wave of Problem 9.3 has components in both x- and y-directions. [When an electromagnetic wave


propagating in a waveguide has only transverse electric field vectors and no electric field in the


direction of propagation it is called a transverse electric (TE) wave. Similarly a transverse magnetic


(TM) wave may exist. The plane-polarized wave of Problem 9.3 is a transverse electric wave; the


corresponding transverse magnetic wave would have Hz;Ex and Ey components. The values of n in


Problem 9.3 satisfying the boundary conditions are written as subscripts to define the exact mode of


propagation, e.g. TE10.]


Problem 9.5
Use the value of the inductance and capacitance of a pair of plane parallel conductors of separation a


and width b to show that the characteristic impedance of such a waveguide is given by


Z 0 ¼ a


b


ffiffiffi
�


"


r
�


where � and " are respectively the permeability and permittivity of the medium between the


conductors.
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Problem 9.6
Consider either the Poynting vector or the energy per unit volume of an electromagnetic wave to


show that the power transmitted by a single positive travelling wave in the waveguide of Problem 9.5


is 1
2


abE 2
0


ffiffiffiffiffiffiffiffi
"=�


p
:


Problem 9.7
An electromagnetic wave (E, H) propagates in the x-direction down a perfectly conducting hollow


tube of arbitrary cross section. The tangential component of E at the conducting walls must be zero


at all times.
Show that the solution E ¼ Eðy; zÞ n cos ð!t � kxxÞ substituted in the wave equation yields


@ 2Eðy; zÞ
@y2


þ @ 2Eðy; zÞ
@z 2


¼ �k 2Eðy; zÞ;


where k 2 ¼ !2=c 2 � k 2
x and k x is the wave number appropriate to the x-direction, n is the unit vector


in any direction in the ðy; zÞ plane.


Problem 9.8
If the waveguide of Problem 9.7 is of rectangular cross-section of width a in the y-direction and


height b in the z-direction, show that the boundary conditions Ex ¼ 0 at y ¼ 0 and a and at z ¼ 0 and


b in the wave equation of Problem 9.7 gives


Ex ¼ A sin
m�y


a
sin


n�z


b
cos ð!t � kxxÞ;


where


k 2 ¼ � 2 m2


a2
þ n2


b2


� �


Problem 9.9
Show, from Problems 9.7 and 9.8, that the lowest possible value of ! (the cut-off frequency) for k x to


be real is given by m ¼ n ¼ 1.


Problem 9.10
Prove that the product of the phase and group velocity !=kx; @!=@kx of the wave of Problems 9.7–


9.9 is c 2, where c is the velocity of light.


Problem 9.11
Consider now the extension of Problem 9.2 where the waves are reflected at the rigid edges of the


rectangular membrane of sides length a and b as shown in the diagram. The final displacement is the


result of the superposition


z ¼A1 e i½!t�ðk 1xþk 2yÞ�


þ A2 e i½!t�ðk 1x�k 2yÞ�


þ A3 e i½!t�ð�k 1x�k 2yÞ�


þ A4 e i½!t�ð�k 1xþk 2yÞ�


with the boundary conditions


z ¼ 0 at x ¼ 0 and x ¼ a
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and


z ¼ 0 at y ¼ 0 and y ¼ b


−k2


−k1


−k2


−k1


k2


y b


a


x


k2


k1


k1


Show that this leads to a displacement


z ¼ �4 A1 sin k1x sin k 2y cos!t


(the real part of z), where


k 1 ¼ n1�


a
and k2 ¼ n2�


b


Problem 9.12
In deriving the result that the average energy of an oscillator at frequency � and temperature T is


given by


�"" ¼ h�


e ðh�=kTÞ � 1


Planck assumed that a large number N of oscillators had energies 0; h�; 2h� . . . nh� distributed


according to Boltzmann’s Law


N n ¼ N 0 e�nh�=kT


where the number of oscillators N n with energy nh� decreases exponentially with increasing n.
Use the geometric progression series


N ¼
X


n


N n ¼ N 0ð1 þ e�h�=kT þ e�2h�=kT . . .Þ


to show that


N ¼ N0


1 � e�h�=kT


If the total energy of the oscillators in the nth energy state is given by


En ¼ Nnnh�


262 Waves in More than One Dimension







prove that the total energy over all the n energy states is given by


E ¼
X


n


En ¼ N0


h� e�h�=kT


ð1 � e�h�=kTÞ 2


Hence show that the average energy per oscillator


�"" ¼ E


N
¼ h�


eh�=kT � 1


and expand the denominator to show that for h� � kT, that is low frequencies and long wavelengths.


Planck’s Law becomes the classical expression of Rayleigh–Jeans.


Problem 9.13
The wave representation of a particle, e.g. an electron, in a rectangular potential well throughout


which V ¼ 0 is given by Schrödinger’s time-independent equation


@ 2�


@x2
þ @ 2�


@y 2
þ @ 2�


@z 2
¼ � 8�2m


h2
E�;


where E is the particle energy, m is the mass and h is Planck’s constant. The boundary conditions to


be satisfied are  ¼ 0 at x ¼ y ¼ z ¼ 0 and at x ¼ Lx; y ¼ Ly; z ¼ L z, where L x, L y and L z are the


dimensions of the well.


Show that


� ¼ A sin
l�x


L x


sin
r�y


L y


sin
n�z


L z


is a solution of Schrödinger’s equation, giving


E ¼ h2


8m


l2


L 2
x


þ r 2


L2
y


þ n2


L 2
z


 !


When the potential well is cubical of side L,


E ¼ h2


8mL2
ðl2 þ r 2 þ n2Þ


and the lowest value of the quantized energy is given by


E ¼ E0 for l ¼ 1; r ¼ n ¼ 0


Show that the next energy levels are 3E0; 6E0 (three-fold degenerate), 9E0 (three-fold
degenerate), 11E0 (three-fold degenerate), 12E0 and 14E0 (six-fold degenerate).


Problem 9.14
Show that at low energy levels (long wavelengths) h� � kT , Planck’s radiation law is equivalent to


the Rayleigh–Jeans expression.


Problem 9.15
Planck’s radiation law, expressed in terms of energy per unit range of wavelength instead of


frequency, becomes


E� ¼
8�ch


�5ðech=�kT � 1Þ
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Use the variable x ¼ ch=�k T to show that the total energy per unit volume at temperature T 


absolute is given by ð1


0


E� d� ¼ aT 4 J m�3


where


a ¼ 8� 5k 4


15c3h3


(The constant ca=4 ¼ �, Stefan’s Constant in the Stefan-Boltzmann Law.) Note thatð1


0


x3 dx


ex � 1
¼ �4


15


Problem 9.16
Show that the wavelength �m at which E� in Problem 9.15 is a maximum is given by the solution of


1 � x


5


� �
ex ¼ 1; where x ¼ ch


�kT


The solution is ch=�mkT ¼ 4:965.


Problem 9.17
Given that ch=�m ¼ 5 kT in Problem 9.16, show that if the sun’s temperature is about 6000 K, then


�m � 4:7 � 10�7 m, the green region of the visible spectrum where the human eye is most sensitive


(evolution ?).


Problem 9.18
The tungsten filament of an electric light bulb has a temperature of � 2000 K. Show that in this case


�m � 14 � 10�7 m, well into the infrared. Such a lamp is therefore a good heat source but an


inefficient light source.


Problem 9.19
A free electron (travelling in a region of zero potential) has an energy


E ¼ p2


2m
¼ �h2


2m


� �
k 2 ¼ EðkÞ


where the wavelength


� ¼ h=p ¼ 2�=k


In a weak periodic potential; for example, in a solid which is a good electrical conductor,
E ¼ ð�h2=2m�Þ k 2, where m� is called the effective mass. (For valence electrons m � � m:Þ


Represented as waves, the electrons in a cubic potential well ðV ¼ 0Þ of side L have allowed wave
numbers k, where


k 2 ¼ k 2
x þ k 2


y þ k 2
z and k i ¼


n i�


L


(see Problem 9.13). For each value of k there are two allowed states (each defining the spin state of


the single occupying electron–Pauli’s principle). Use the arguments in Chapter 9 to show that the
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total number of states in k space between the values k and k þ dk is given by


PðkÞ ¼ 2
L


�


� �3
4�k 2 dk


8


Use the expression E ¼ ð�h2=2m �Þ k 2 to convert this into the number of states SðEÞ dE in the energy


interval dE to give


SðEÞ ¼ A


2� 2


2m


�h2


� �3=2 ffiffiffiffi
E


p


where A ¼ L 3.
If there are N electrons in the N lowest energy states consistent with Pauli’s principle, show that


the integral ð E f


0


SðEÞ dE ¼ N


gives the Fermi energy level


E f ¼
�h2


2m�
3� 2N


A


� �2=3


where E f is the kinetic energy of the most energetic electron when the solid is in its ground state.


Summary of Important Results


Wave Equation in Two Dimensions


@ 2z


@x2
þ @ 2z


@y2
¼ 1


c2


@ 2z


@t 2


Lines of constant phase lx þ my ¼ ct propagate in direction kðk1; k2Þ where l ¼
k1=k;m ¼ k2=k; k 2 ¼ k 2


1 þ k 2
2 and c2 ¼ !2=k 2. Solution is


z ¼ A e ið!t�k�rÞ for rðx; yÞ


where k � r ¼ k1x þ k2y.


Wave Equation in Three Dimensions


@ 2�


@x2
þ @ 2�


@y2
þ @ 2�


@z2
¼ 1


c2


@ 2�


@t 2


Planes of constant phase lx þ my þ nz ¼ ct propagate in a direction


kðk1; k2; k3Þ; where l ¼ k1=k; m ¼ k2=k; n ¼ k3=k


k 2 ¼ k 2
1 þ k 2


2 þ k 2
3 and c2 ¼ !2=k 2:
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Solution is


� ¼ A eið!t�k�rÞ for rðx; y; zÞ:


Wave Guides


Reflection from walls y ¼ 0; y ¼ b in a two-dimensional wave guide for a wave of


frequency ! and vector direction kðk1; k2Þ gives normal modes in the y direction with


k2 ¼ n�=b and propagation in the x direction with phase velocity


v p ¼ !


k1


>
!


k
¼ v


and group velocity


v g ¼ @!


@k1


such that v pv g ¼ v 2


Cut-off frequency


Only frequencies !	 n�v=b will propagate where n is mode number.


Normal Modes in Three Dimensions


Wave equation separates into three equations (one for each variable x, y, z) to give solution


¼ A
sin


cos
k1x


sin


cos
k2y


sin


cos
k3z


sin


cos
!t


(Boundary conditions determine final form of solution.)


For waves of velocity c, the number of normal modes per unit volume of an enclosure in


the frequency range � to � þ d�


¼ 4�� 2 d�


c3


Directly applicable to


� Planck’s Radiation Law


� Debye’s theory of specific heats of solids


� Fermi energy level (Problem 9.19)
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Fourier Methods


Fourier Series


In this chapter we are going to look in more detail at the implications of the principles of


superposition which we met at the beginning of the book when we added the two separate


solutions of the simple harmonic motion equation. Our discussion of monochromatic


waves has led to the idea of repetitive behaviour in a simple form. Now we consider more


complicated forms of repetition which arise from superposition.


Any function which repeats itself regularly over a given interval of space or time is


called a periodic function. This may be expressed by writing it as f ðxÞ ¼ f ðx � �Þ where �
is the interval or period.


The simplest examples of a periodic function are sines and cosines of fixed frequency


and wavelength, where � represents the period � , the wavelength � or the phase angle


2� rad, according to the form of x. Most periodic functions for example the square wave


system of Figure 10.1, although quite simple to visualize are more complicated to represent


mathematically. Fortunately this can be done for almost all periodic functions of interest in


physics using the method of Fourier Series, which states that any periodic function may be


represented by the series


f ðxÞ ¼ 1
2


a0 þ a1 cos x þ a2 cos 2x . . .þ an cos nx


þ b1 sin x þ b2 sin 2x . . .þ bn sin nx;
ð10:1Þ


that is, a constant 1
2


a0 plus sine and cosine terms of different amplitudes, having


frequencies which increase in discrete steps. Such a series must of course, satisfy certain


conditions, chiefly those of convergence. These convergence criteria are met for a function


with discontinuities which are not too severe and with first and second differential


coefficients which are well behaved. At such discontinuities, for instance in the square


wave where f ðxÞ ¼ �h at x ¼ 0;�2�, etc. the series represents the mean of the values of


the function just to the left and just to the right of the discontinuity.
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We may write the series in several equivalent forms:


f ðxÞ ¼ 1


2
a0 þ


X1
n¼1


ðan cos nx þ bn sin nxÞ


¼ 1


2
a0 þ


X1
n¼1


cn cos ðnx � �nÞ


where


c2
n ¼ a2


n þ b2
n


and


tan �n ¼ bn=an


or


f ðxÞ ¼
X1


n¼�1
dn einx


where


2dn ¼ an � ibnðn� 0Þ
and


2dn ¼ a�n þ ib�nðn < 0Þ


To find the values of the coefficients an and bn let us multiply both sides of equation


(10.1) by cos nx and integrate with respect to x over the period 0 to 2� (say).


Every term


ð 2�


0


cos mx cos nx dx ¼ 0 if m 6¼ n


� if m ¼ n


�


whilst every term ð 2�


0


sin mx cos nx dx ¼ 0 for all m and n:


2 pp 4 p– p x0
h


4h (sin x + sin 3x +pf (x ) = 1
3


sin 5x +1
5


sin 7x . . . )1
7


Figure 10.1 Square wave of height h and its Fourier sine series representation (odd function)
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Thus for m ¼ n,


an


ð 2�


0


cos2 nx dx ¼ �an


so that


an ¼ 1


�


ð 2�


0


f ðxÞ cos nx dx


Similarly, by multiplying both sides of equation (10.1) by sin nx and integrating from 0


to 2� we have, since ð 2�


0


sin mx sin nx dx ¼ 0 if m 6¼ n


� if m ¼ n


�


that


bn ¼ 1


�


ð 2�


0


f ðxÞ sin nx dx


Immediately we see that the constant ðn ¼ 0Þ, given by 1
2


a0 ¼ 1=2�
Ð 2�


0
f ðxÞ dx, is just


the average of the function over the interval 2�. It is, therefore, the steady or ‘d.c.’ level on


which the alternating sine and cosine components of the series are superimposed, and the


constant can be varied by moving the function with respect to the x-axis. When a periodic


function is symmetric about the x-axis its average value, that is, its steady or d.c. base level,
1
2


a0, is zero, as in the square wave system of Figure 10.1. If we raise the square waves so


that they stand as pulses of height 2h on the x-axis, the value of 1
2


a0 is h� (average value


over 2�). The values of an represent twice the average value of the product f ðxÞ cos nx over


the interval 2�; bn can be interpreted in a similar way.


We see also that the series representation of the function is the sum of cosine terms


which are even functions ½cos x ¼ cos ð�xÞ� and of sine terms which are odd functions


½sin x ¼ �sin ð�xÞ�. Now every function f ðxÞ ¼ 1
2
½ f ðxÞ þ f ð�xÞ� þ 1


2
½ f ðxÞ � f ð�xÞ�, in


which the first bracket is even and the second bracket is odd. Thus, the cosine part of a


Fourier series represents the even part of the function and the sine terms represent the odd


part of the function. Taking the argument one stage further, a function f ðxÞ which is an even


function is represented by a Fourier series having only cosine terms; if f ðxÞ is odd it will


have only sine terms in its Fourier representation. Whether a function is completely even or


completely odd can often be determined by the position of the y-axis. Our square wave of


Figure 10.1 is an odd function ½ f ðxÞ ¼ �f ð�xÞ�; it has no constant and is represented by


f ðxÞ ¼ 4h=�ðsin x þ 1=3 sin 3x þ1=5 sin 5x, etc. but if we now move the y-axis a half


period to the right as in Figure 10.2, then f ðxÞ ¼ f ð�xÞ, an even function, and the square


wave is represented by


f ðxÞ ¼ 4h


�
ðcos x � 1


3
cos 3x þ 1


5
cos 5x � 1


7
cos 7x þ � � �Þ
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If we take the first three or four terms of the series representing the square wave of


Figure 10.1 and add them together, the result is Figure 10.3. The fundamental, or first


harmonic, has the frequency of the square wave and the higher frequencies build up the


squareness of the wave. The highest frequencies are responsible for the sharpness of the


vertical sides of the waves; this type of square wave is commonly used to test the frequency


response of amplifiers. An amplifier with a square wave input effectively ‘Fourier analyses’


the input and responds to the individual frequency components. It then puts them together


again at its output, and if a perfect square wave emerges from the amplifier it proves that


the amplifier can handle the whole range of the frequency components equally well. Loss


of sharpness at the edges of the waves shows that the amplifier response is limited at the


higher frequency range.


x


2


h


p
2
–p


2
3p


2
–3p


4h (cos x – cos 3x +pf (x ) = 1
3


cos 5x –1
5


cos 7x . . . )1
7


Figure 10.2 The wave of Figure 10.1 is now symmetric about the y axis and becomes a cosine series
(even function)


h


4h sin x


sin 3x


p


sin 5x


addition of first
three terms


Figure 10.3 Addition of the first three terms of the Fourier series for the square wave of Figure 10.1
shows that the higher frequencies are responsible for sharpening the edges of the pulse
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Example of Fourier Series


Consider the square wave of height h in Figure 10.1. The value of the function is given by


f ðxÞ ¼ h for 0 < x < �


and


f ðxÞ ¼ �h for � < x < 2�


The coefficients of the series representation are given by


an ¼ 1


�
h


ð �
0


cos nx dx � h


ð 2�


�


cos nx dx


� �
¼ 0


because


ð �
0


cos nx dx ¼
ð 2�


�


cos nx dx ¼ 0


and


bn ¼ 1


�
h


ð �
0


sin nx dx � h


ð 2�


�


sin nx dx


� �


¼ h


n�
½½cos nx�0


� þ ½cos nx�2�
� �


¼ h


n�
½ð1 � cos n�Þ þ ð1 � cos n�Þ�


giving bn ¼ 0 for n even and bn ¼ 4h=n� for n odd. Thus, the Fourier series representation


of the square wave is given by


f ðxÞ ¼ 4h


�
sin x þ sin 3x


3
þ sin 5x


5
þ sin 7x


7
þ � � �


� �


Fourier Series for any Interval


Although we have discussed the Fourier representation in terms of a periodic function its


application is much more fundamental, for any section or interval of a well behaved


function may be chosen and expressed in terms of a Fourier series. This series will


accurately represent the function only within the chosen interval. If applied outside that


interval it will not follow the function but will periodically repeat the value of the function


within the chosen interval. If we represent this interval by a Fourier cosine series the


repetition will be that of an even function, if the representation is a Fourier sine series an


odd function repetition will follow.
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Suppose now that we are interested in the behaviour of a function over only one-half of


its full interval and have no interest in its representation outside this restricted region. In


Figure 10.4a the function f ðxÞ is shown over its full space interval �l=2 to þl=2, but f ðxÞ
can be represented completely in the interval 0 to þl=2 by either a cosine function (which


will repeat itself each half-interval as an even function) or it can be represented completely


by a sine function, in which case it will repeat itself each half-interval as an odd function.


Neither representation will match f ðxÞ outside the region 0 to þl=2, but in the half-interval


0 to þl=2 we can write


f ðxÞ ¼ feðxÞ ¼ foðxÞ


where the subscripts e and o are the even (cosine) or odd (sine) Fourier representations,


respectively.


The arguments of sines and cosines must, of course, be phase angles, and so far the


variables x has been measured in radians. Now, however, the interval is specified as a


distance and the variable becomes 2�x=l, so that each time x changes by l the phase angle


changes by 2�.


Thus


f eðxÞ ¼
a0


2
þ
X1
n¼1


an cos
2�nx


l


(a)


(b)


0


f (x )


f e(x )


f 0(x )


0


0


(c)


2
–l


2
–l


2
–l


x


x


x


2
l


2
l


2
l


Figure 10.4 A Fourier series may represent a function over a selected half-interval. The general
function in (a) is represented in the half-interval 0 < x < l=2 by f e, an even function cosine series in
(b), and by f o, an odd function sine series in (c). These representations are valid only in the specified
half-interval. Their behaviour outside that half-interval is purely repetitive and departs from the
original function
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where


an ¼ 1
1
2


interval


ð l=2


�l=2


f ðxÞ cos
2�nx


l
dx


¼ 2


l


ð 0


�l=2


feðxÞ cos
2�nx


l
dx þ


ð l=2


0


feðxÞ cos
2�nx


l
dx


" #


¼ 4


l


ð l=2


0


f ðxÞ cos
2�nx


l
dx


because


f ðxÞ ¼ feðxÞ from x ¼ 0 to l=2


and


f ðxÞ ¼ f ð�xÞ ¼ feðxÞ from x ¼ 0 to � l=2


Similarly we can represent f ðxÞ by the sine series


f ðxÞ ¼ foðxÞ ¼
X1
n¼1


bn sin
2�nx


l


in the range x ¼ 0 to l=2 with


bn ¼ 1
1
2


interval


ð l=2


�l=2


f ðxÞ sin
2�nx


l
dx


¼ 2


l


ð 0


�l=2


foðxÞ sin
2�nx


l
dx þ


ð l=2


0


foðxÞ sin
2�nx


l
dx


" #


In the second integral foðxÞ ¼ f ðxÞ in the interval 0 to l=2 whilst


ð 0


�l=2


foðxÞ sin
2�nx


l
dx ¼


ð 0


l=2


foð�xÞsin
2�nx


l
dx ¼ �


ð 0


l=2


foðxÞ sin
2�nx


l
dx


¼
ð l=2


0


foðxÞ sin
2�nx


l
dx ¼


ð l=2


0


f ðxÞ sin
2�nx


l
dx


Hence


bn ¼ 4


l


ð l=2


0


f ðxÞ sin
2�nx


l
dx
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If we follow the behaviour of feðxÞ and foðxÞ outside the half-interval 0 to l=2 (Fig-


ure 10.4a, b) we see that they no longer represent f ðxÞ.


Application of Fourier Sine Series to a Triangular Function


Figure 10.5 shows a function which we are going to describe by a sine series in the half-


interval 0 to �. The function is


f ðxÞ ¼ x 0 < x <
�


2


� �
and


f ðxÞ ¼ �� x
�


2
< x < �


� �


Writing f ðxÞ ¼
P


bn sin nx gives


bn ¼ 2


�


ð �=2


0


x sin nx dx þ 2


�


ð �
�=2


ð�� xÞ sin nx dx


¼ 4


n2�
sin


n�


2


When n is even sin n�=2 ¼ 0, so that only terms with odd values of n are present and


f ðxÞ ¼ 4


�


sin x


12
� sin 3x


32
þ sin 5x


52
� sin 7x


72
þ � � �


� �


Note that at x ¼ �=2, f ðxÞ ¼ �=2, giving


�2


8
¼ 1


12
þ 1


32
þ 1


52
þ ¼


X1
n¼0


1


ð2n þ 1Þ2


We shall use this result a little later.


0


I


x


f (x )


p


f (x ) = x ( 0 < x <     )
2
p


f (x ) = p –x (     < x < p )
2
p


2
p


2
–p–p


Figure 10.5 Function representing a plucked string and defined over a limited interval. When the
string vibrates all the permitted harmonics contribute to the initial configuration
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Note that the solid line in the interval 0 to �� in Figure 10.5 is the Fourier sine


representation for f ðxÞ repeated outside the interval 0 to � whilst the dotted line would


result if we had represented f ðxÞ in the interval 0 to � by an even cosine series.


(Problems 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9)


Application to the Energy in the Normal Modes of a Vibrating
String


If we take a string of length l with fixed ends and pluck its centre a distance d we have the


configuration of the half interval 0 to � of Figure 10.5 which we represented as a Fourier


sine series. Releasing the string will set up its normal mode or standing wave vibrations,


each of which we have shown on p. 126 to have the displacement


yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx


c
ð5:10Þ


where !n ¼ n�c=l is the normal mode frequency.


The total displacement, which represents the shape of the plucked string at t ¼ 0 is given


by summing the normal modes


y ¼
X


yn ¼
X


ðAn cos!nt þ Bn sin!ntÞ sin
!nx


c


Note that this sum resembles a Fourier series where the fixed ends of the string, y ¼ 0 at


x ¼ 0 and x ¼ l allow only the sine terms in x in the series expansion. If the string remains


plucked at rest only the terms in x with appropriate coefficients are required to describe it,


but its vibrational motion after release has a time dependence which is expressed in each


harmonic coefficient as


An cos!nt þ Bn sin!nt


The significance of these coefficients emerges when we consider the initial or boundary


conditions in time.


Let us write the total displacement of the string at time t ¼ 0 as


y0ðxÞ ¼
X


ynðxÞ ¼
X


ðAn cos!nt þ Bn sin!ntÞ sin
!nx


c


¼
X


An sin
!nx


c
at t ¼ 0


Similarly we write the velocity of the string at time t ¼ 0 as


v 0ðxÞ ¼
@


@t
y0ðxÞ ¼


X
_yynðxÞ


¼
X


ð�!nAn sin!nt þ !nBn cos!ntÞ sin
!nx


c


¼
X


!nBn sin
!nx


c
at t ¼ 0


Both y0ðxÞ and v 0ðxÞ are thus expressed as Fourier sine series, but if the string is at rest at


t ¼ 0, then v 0ðxÞ ¼ 0 and all the Bn coefficients are zero, leaving only the An’s. If the
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displacement of the string y0ðxÞ ¼ 0 at time t ¼ 0 whilst the string is moving, then all the


An’s are zero and the Fourier coefficients are the !nBn’s.


We can solve for both An and !nBn in the usual way for if


y0ðxÞ ¼
X


An sin
!nx


c


and


v 0ðxÞ ¼
X


!nBn sin
!nx


c


for a string of length l then


An ¼ 2


l


ð l


0


y0ðxÞ sin
!nx


c
dx


and


!nBn ¼ 2


l


ð l


0


v 0ðxÞ sin
!nx


c
dx


If the plucked string of mass m (linear density �) is released from rest at


t ¼ 0 ðv 0ðxÞ ¼ 0Þ the energy in each of its normal modes of vibration, given on p. 134 as


En ¼ 1
4


m!2
nðA2


n þ B2
nÞ


is simply


En ¼ 1
4


m!2
nA2


n


because all Bn’s are zero.


The total vibrational energy of the released string will be the sum
P


En over all the


modes present in the vibration.


Let us now solve the problem of the plucked string released from rest. The configuration


of Figure 10.5 (string length l, centre plucked a distance d) is given by


y0ðxÞ ¼
2dx


l
0 x l


2


¼ 2dðl � xÞ
l


l


2
 x l


so


An ¼ 2


l


ð l=2


0


2dx


l
sin


!nx


c
dx þ


ð l


l=2


2dðl � xÞ
l


sin
!nx


c
dx


" #


¼ 8d


n2�2
sin


n�


2
for !n ¼ n�c


l


� �


We see at once that An ¼ 0 for n even (when the sine term is zero) so that all even


harmonic modes are missing. The physical explanation for this is that the even harmonics


would require a node at the centre of the string which is always moving after release.
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The displacement of our plucked string is therefore given by the addition of all the


permitted (odd) modes as


y0ðxÞ ¼
X
n odd


ynðxÞ ¼
X
n odd


An sin
!nx


c


where


An ¼ 8d


n2�2
sin


n�


2


The energy of the nth mode of oscillation is


En ¼ 1


4
m!2


n A2
n ¼ 64d 2m!2


n


4ðn2�2Þ2


and the total vibrational energy of the string is given by


E ¼
X
n odd


En ¼ 16d 2m


�4


X
n odd


!2
n


n4
¼ 16d 2c2m


�2l2


X
n odd


1


n2


for


!n ¼ n�c


l


But we saw in the last section that


X
n odd


1


n2
¼ �2


8


so


E ¼
X


En ¼ 2mc2d 2


l2
¼ 2Td 2


l


where T ¼ �c2 is the constant tension in the string.


This vibrational energy, in the absence of dissipation, must be equal to the potential


energy of the plucked string before release and the reader should prove this by calculating


the work done in plucking the centre of the string a small distance d, where d � l.


To summarize, our plucked string can be represented as a sine series of Fourier


components, each giving an allowed normal mode of vibration when it is released. The


concept of normal modes allows the energies of each mode to be added to give the total


energy of vibration which must equal the potential energy of the plucked string before


release. The energy of the nth mode is proportional to n�2 and therefore decreases with


increasing frequency. Even modes are forbidden by the initial boundary conditions.
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The boundary conditions determine which modes are allowed. If the string were struck


by a hammer those harmonics having a node at the point of impact would be absent, as in


the case of the plucked string. Pianos are commonly designed with the hammer striking a


point one seventh of the way along the string, thus eliminating the seventh harmonic which


combines to produce discordant effects.


Fourier Series Analysis of a Rectangular Velocity Pulse on a
String


Let us now consider a problem similar to that of the last section except that now the


displacement y0ðxÞ of the string is zero at time t ¼ 0 whilst the velocity v 0ðxÞ is non-zero.


A string of length l, fixed at both ends, is struck by a mallet of width a about its centre


point. At the moment of impact the displacement


y0ðxÞ ¼ 0


but the velocity


v 0ðxÞ ¼
@y0ðxÞ
@t


¼ 0 for x � l


2


����
����� a


2


¼ v for x � l


2


����
���� < a


2


This situation is shown in Figure 10.6.


The Fourier series is given by


v 0ðxÞ ¼
X


n


_yyn ¼
X


n


!nBn sin
!nx


c


where


!nBn ¼ 2


l


ð l=2þa=2


þl=2�a=2


v sin
!nx


c
dx


¼ 4v


n�
sin


n�


2
sin


n�a


2l


V


a


l


x


Figure 10.6 Velocity distribution at time t ¼ 0 of a string length l, fixed at both ends and struck
about its centre point by a mallet of width a. Displacement y0ðxÞ ¼ 0; velocity v 0ðxÞ ¼ v for
jx � l=2j < a=2 and zero outside this region
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Again we see that !nBn ¼ 0 for n even ðsin n�=2 ¼ 0Þ because the centre point of the


string is never stationary, as is required in an even harmonic.


Thus


v 0ðxÞ ¼
X
n odd


4v


n�
sin


n�a


2l
sin


!nx


c


The energy per mode of oscillation


En ¼ 1
4


m!2
nðA2


n þ B2
nÞ


¼ 1
4


m!2
nB2


n ðAll An’s ¼ 0Þ


¼ 1
4


m
16v 2


n2�2
sin2 n�a


2l


¼ 4mv 2


n2�2
sin2 n�a


2l


Now


n ¼ !n


!1


¼ !nl


�c


for the fundamental frequency


!1 ¼ �c


l


So


En ¼ 4mv 2c2


l2!2
n


sin2 !na


2c


Again we see, since !n / n that the energy of the nth mode / n�2 and decreases with


increasing harmonic frequency. We may show this by rewriting


Enð!Þ ¼
mv 2a2


l2


sin2ð!na=2cÞ
ð!na=2cÞ2


¼ mv 2a2


l2


sin2�


�2


where


� ¼ !na=2c


and plotting this expression as an energy-frequency spectrum in Figure 10.7.
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The familiar curve of sin2�=�2 again appears as the envelope of the energy values for


each !n.


If the energy at !1 is E1 then E3 ¼ E1=9 and E5 ¼ E1=25 so the major portion of the


energy in the velocity pulse is to be found in the low frequencies. The first zero of the


envelope sin2�=�2 occurs when


� ¼ !a


2c
¼ �


so the width of the central frequency pulse containing most of the energy is given by


! � 2�c


a


This range of energy-bearing harmonics is known as the ‘spectral width’ of the pulse


written


�! � 2�c


a


The ‘spatial width’ a of the pulse may be written as �x so we have


�x�! � 2�c


w1 w3 w5 w7


wn


En(w)


E1


E1
9 E1


25 E1
49


(a)


w = 2p C
a


Figure 10.7 (a) Distribution of the energy in the harmonics !n of the string of Figure 10.6. The
spectrum Enð!Þ / sin2�=�2 where � ¼ !na=2c. Most of the energy in the string is contained in the
frequency range �! � 2�c=a, and for a ¼ �x (the spatial width of the pulse), �x=c ¼ �t and
�!� t � 2� (Bandwidth Theorem). Note that the values of Enð!Þ for !3; !5; !7, etc. are magnified
for clarity. (b) The true shape of the pulse


wn


En(w)


(b)
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Reducing the width �x of the mallet will increase the range of frequencies �! required


to take up the energy in the rectangular velocity pulse. Now c is the velocity of waves on


the string so a wave travels a distance �x along the string in a time


�t ¼ �x=c


which defines the duration of the pulse giving


�!�t � 2�


or


��t � 1


the Bandwidth Theorem we first met on p. 134.


Note that the harmonics have frequencies


!n ¼ n�c


l


so �c=l is the harmonic interval. When the length l of the string becomes very long and


l ! 1 so that the pulse is isolated and non-periodic, the harmonic interval becomes so


small that it becomes differential and the Fourier series summation becomes the Fourier


Integral discussed on p. 283.


The Spectrum of a Fourier Series


The Fourier series can always be represented as a frequency spectrum. In Figure 10.8 a the


relative amplitudes of the frequency components of the square wave of Figure 10.1 are


plotted, each sine term giving a single spectral line. In a similar manner, the distribution of


energy with frequency may be displayed for the plucked string of the earlier section. The


frequency of the r th mode of vibration is given by ! r ¼ r�c=l, and the energy in each


mode varies inversely with r 2, where r is odd. The spectrum of energy distribution is


therefore given by Figure 10.8 b.


Suppose now that the length of this string is halved but that the total energy remains


constant. The frequency of the fundamental is now increased to ! 0
r ¼ 2r�c=l and


the frequency interval between consecutive spectral lines is doubled (Figure 10.8 c). Again,


the smaller the region in which a given amount of energy is concentrated the wider the


frequency spectrum required to represent it.


Frequently, as in the next section, a Fourier series is expressed in its complex or


exponential form


f ðtÞ ¼
X1


n¼�1
dn ein!t
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4h (sin x + sin 3x +pf (x ) =


4h
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Figure 10.8 (a) Fourier sine series of a square wave represented as a frequency spectrum; (b)
energy spectrum of a plucked string of length l; and (c) the energy spectrum of a plucked string of
length l=2 with the same total energy as (b), demonstrating the Bandwidth Theorem that the greater
the concentration of the energy in space or time the wider its frequency spectrum. Complex
exponential frequency spectrum of (d) cos!t and (e) sin!t
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where 2dn ¼ an � ibnðn� 0Þ and 2dn ¼ a�n þ ib�nðn < 0Þ.
Because


cos n!t ¼ 1
2
ðein!t þ e�in!tÞ


and


sin n!t ¼ 1


2i
ðe in!t � e�in!tÞ


a frequency spectrum in the complex plane produces two spectral lines for each frequency


component n!, one at þn! and the other at �n!. Figure 10.8 d shows the cosine


representation, which lies wholly in the real plane, and Figure 10.8 e shows the sine


representation, which is wholly imaginary. The amplitudes of the lines in the positive and


negative frequency ranges are, of course, complex conjugates, and the modulus of their


product gives the square of the true amplitude. The concept of a negative frequency is seen


to arise because the e�in!t term increases its phase in the opposite sense to that of the


positive term ein!t. The negative amplitude of the negative frequency in the sine repre-


sentation indicates that it is in antiphase with respect to that of the positive term.


Fourier Integral


At the beginning of this chapter we saw that one Fourier representation of the function


could be written


f ðxÞ ¼
X1


n¼�1
dn einx


where 2dn ¼ an � ibnðn� 0Þ and 2dn ¼ a�n þ ib�nðn < 0Þ.
If we use the time as a variable we may rewrite this as


f ðtÞ ¼
X1


n¼�1
dn ein!t


where, if T is the period,


dn ¼ 1


T


ð T=2


�T=2


f ðtÞ e�in!t d t


(for n ¼ �2;�1; 0; 1; 2, etc.).


If we write ! ¼ 2�1, where 1 is the fundamental frequency, we can write


f ðtÞ ¼
X1


n¼�1


ð T=2


�T=2


f ðt 0Þ e�i2�n 1t 0 d t 0


" #
e i2�n 1t � 1


T
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If we now let the period T approach infinity we are isolating a single pulse by saying that


it will not be repeated for an infinite period; the frequency 1 ¼ 1=T ! 0, and 1=T


becomes infinitesimal and may be written d.


Furthermore, n times 1, when n becomes as large as we please and 1=T ¼ 1 ! 0, may


be written as n1 ¼ , and the sum over n now becomes an integral, since unit change in n


produces an infinitesimal change in n=T ¼ n1.


Hence, for an infinite period, that is for a single non-periodic pulse, we may write


f ðtÞ ¼
ð1
�1


ð1
�1


f ðt 0Þ e�i2�t 0 d t 0
� �


ei2�t d


which is called the Fourier Integral.


We may express this as


f ðtÞ ¼
ð1
�1


FðÞ ei2�t d


where


FðÞ ¼
ð1
�1


f ðt 0Þ e�i2�t 0 d t 0


is called the Fourier Transform of f ðtÞ. We shall discuss the transform in more detail in a


later section of this chapter.


We see that when the period is finite and f ðtÞ is periodic, the expression


f ðtÞ ¼
X1


n¼�1
dn ein!t


tells us that the representation is in terms of an infinite number of different frequencies,


each frequency separated by a finite amount from its nearest neighbour, but when f ðtÞ is not


periodic and has an infinite period then


f ðtÞ ¼
ð1
�1


FðÞ ei2�t d


and this expression is the integral (not the sum) of an infinite number of frequency


components of amplitude FðÞ d infinitely close together, since  varies continuously


instead of in discrete steps.


For a periodic function the amplitude of the Fourier series coefficient


dn ¼ 1


T


ð T=2


�T=2


f ðtÞ e�in!t d t
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whereas the corresponding amplitude in the Fourier integral is


FðÞ d ¼ 1


T


� � ð1
�1


f ðt 0Þ e�in!t 0 d t 0


This corroborates the statement we made when discussing the frequency spectrum that


the narrower or less extended the pulse the wider the range of frequency components


required to represent it. A truly monochromatic wave of one frequency and wavelength (or


wave number) requires a wave train of infinite length before it is properly defined.


No wave train of finite length can be defined in terms of one unique wavelength.


Since a monochromatic wave, infinitely long, of single frequency and constant amplitude


transmits no information, its amplitude must be modified by adding other frequencies (as


we have seen in Chapter 5) before the variation in amplitude can convey information.


These ideas are expressed in terms of the Bandwidth Theorem.


Fourier Transforms


We have just seen that the Fourier integral representing a non-periodic wave group can be


written


f ðtÞ ¼
ð1
�1


FðÞ ei2�t d


where its Fourier transform


FðÞ ¼
ð1
�1


f ðt 0Þ e�i2�t 0 d t 0


so that integration with respect to one variable produces a function of the other. Both


variables appear as a product in the index of an exponential, and this product must be non-


dimensional. Any pair of variables which satisfy this criterion forms a Fourier pair of


transforms, since from the symmetry of the expressions we see immediately that if


FðÞ is the Fourier transform of f ðtÞ


then


f ð�Þ is the Fourier transform of FðtÞ


If we are given the distribution in time of a function we can immediately express it as a


spectrum of frequency, and vice versa. In the same way, a given distribution in space can be


expressed as a function of wave numbers (this merely involves a factor, 1=2�, in front of


the transform because k ¼ 2�=�).


A similar factor appears if ! is used instead of . If the function of f ðtÞ is even only the


cosine of the exponential is operative, and we have a Fourier cosine transform


f ðtÞ ¼
ð1


0


FðÞ cos 2�t d
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and


FðÞ ¼
ð1


0


f ðtÞ cos 2�t d t


If f ðtÞ is odd only the sine terms operate, and sine terms replace the cosines above. Note


that only positive frequencies appear. The Fourier transform of an even function is real and


even, whilst that of an odd function is imaginary and odd.


Examples of Fourier Transforms


The two examples of Fourier transforms chosen to illustrate the method are of great


physical significance. They are


1. The ‘slit’ function of Figure 10.9a,


2. The Gaussian function of Figure 10.11.


As shown, they are both even functions and their transforms are therefore real; the physical


significance of this is that all the frequency components have the same phase at zero time.


The Slit Function


This is a function having height h over the time range �d=2. Thus, f ðtÞ ¼ h for jtj < d=2


and zero for jtj > d=2, so that


FðÞ ¼
ð1
�1


f ðtÞ e�i2�t d t ¼
ð d=2


�d=2


h e�i2�t d t


¼ �h


i2�
½e�i2�d=2 � eþi2�d=2� ¼ hd


sin�


�


(a)


timet = 0


(b)


h hd


d
n1 = 1


d


n


n2 = 2
d


Figure 10.9 (a) Narrow slit function of extent d in time and of height h, and (b) its Fourier
transform
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where


� ¼ 2�d


2


Again we see the Fourier transformation of a rectangular pulse in time to a sin�=� pattern


in frequency. The Fourier transform of the same pulse in space will give the same


distribution as a function of wavelength. Figure 10.9b shows that as the pulse width


decreases in time the separation between the zeros of the transform is increased. The


negative values in the spectrum of the transform indicate a phase reversal for the amplitude


of the corresponding frequency component.


The Fourier Transform Applied to Optical Diffraction from a
Single Slit


This topic belongs more properly to the next chapter where it will be treated by another


method, but here we derive the fundamental result as an example of the Fourier Transform.


The elegance of this method is seen in problems more complicated than the one-


dimensional example considered here. We shall see its extension to two dimensions in


Chapter 12 when we consider the diffraction patterns produced by rectangular and circular


apertures.


The amplitude of light passing through a single slit may be represented in space by the


rectangular pulse of Figure 10.9a where d is now the width of the slit. A plane wave of


monochromatic light, wavelength �, falling normally on a screen which contains the


narrow slit of width d � �, forms a secondary system of plane waves diffracted in all


directions with respect to the screen. When these diffracted waves are focused on to a


second screen the intensity distribution (square of the amplitude) may be determined in


terms of the aperture dimension d, the wavelength � and the angle of diffraction �.
In Figure 10.10 the light diffracted through an angle � is brought to focus at a point P on


the screen PP0. Finding the amplitude of the light at P is the simple problem of adding all


the small contributions in the diffracted wavefront taking account of all the phase


differences which arise with variation of path length from P to the points in the slit aperture


from which the contributions originate. The diffraction amplitude in k or wave number


space is the Fourier transform of the pulse, width d, in x space in Figure 10.9b. The


conjugate parameters  and t are exactly reciprocal but the product of x and k involves the term


2� which requires either a constant factor 1=2� in front of one of the transform integrals or


a common factor 1=
ffiffiffiffiffiffi
2�


p
in front of each. This factor is however absorbed into the constant


value of the maximum intensity and all other intensities are measured relative to it.


The constant pulse height now measures the amplitude h of the small wave sources


across the slit width d and the Fourier transform method is the addition by integration of


their contributions.


In Figure 10.10 we see that the path difference between the contribution at the centre of


the slit and that at a point x in the slit is given by x sin �, so that the phase difference is


� ¼ 2�


�
x sin � ¼ kx sin �
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The product kx sin � can, however be expressed in a form more suitable for extension to


two- and three-dimensional examples by writing it as k � x ¼ k lx, the scalar product of the


vector k, giving the wave propagation direction, and the vector x, l being the direction


cosine


l ¼ cos ð�=2 � �Þ
¼ sin �


of k with respect to the x-axis.


Adding all the small contributions across the slit to obtain the amplitude at P by the


Fourier transform method gives


FðkÞ ¼ 1


2�


ð
f ðxÞ e�i� dx


¼ 1


2�


ðþd=2


�d=2


h e�iklx dx


¼ h


�ikl


1


2�
ðe�ikld=2 � eþikld=2Þ


¼ �2ih


�ikl2�
sin


kld


2


¼ dh


2�


sin�


�


Source of
monochromatic
light


Condenser
lens


Slit of
width d Focusing


lens


d sinq


qd x
k


Plane of
diffraction
pattern
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Figure 10.10 A monochromatic plane wave normally incident on a narrow slit of width d is
diffracted an angle �, and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all contributions with their appropriate phases with respect to the central point in
the slit. The contribution from a point x in the slit has phase � ¼ 2�x sin �=� with respect to the
central contribution. The phase difference from contributing points on opposite edges of the slit is
� ¼ 2�d sin �=� ¼ 2�
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where


� ¼ kld


2
¼ �


�
d sin �


The intensity I at P is given by the square of the amplitude; that is, by the product of FðkÞ
and its complex conjugate F �ðkÞ, so that


I ¼ d 2h2


4�2


sin2�


�2


where I0, the principal maximum intensity at � ¼ 0, (P0 in Figure 10.10) is now


I0 ¼ d 2h2


4�2


The Gaussian Curve


This curve often appears as the wave group description of a particle in wave mechanics.


The Fourier transform of a Guassian distribution is another Gaussian distribution.


In Figure 10.11a the Gaussian function of height h is symmetrically centred at


time t ¼ 0, and is given by f ðtÞ ¼ h e�t2=�2


, where the width parameter or standard


deviation � is that value of t at which the height of the curve has a value equal to e�1 of its


maximum.


Its transform is


FðÞ ¼
ð1
�1


h e�t =� 2


e�i2�t d t


¼
ð1
�1


h e ð�t=� 2�i2�tþ� 2 2� 2Þ e�� 2 2� 2


d t


¼ h e ð�� 2 2� 2Þ
ð1
�1


e�ðt=�þi��Þ 2


d t


(a)


0 0t n


(b)
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Figure 10.11 (a) A Gaussian function Fourier transforms (b) into another Gaussian function
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The integral ð1
�1


e�x 2


dx ¼
ffiffiffi
�


p


and substituting, with x ¼ ðt=�þ i��Þ and d t ¼ � dx, gives


FðÞ ¼ h��1=2e��
22�2


another Gaussian distribution in frequency space (Figure 10.11b) with a new height h��1=2


and a new width parameter ð��Þ�1
.


As in the case of the slit and the diffraction pattern, we see again that a narrow pulse in


time (width �) leads to a wide frequency distribution [width ð��Þ�1
].


When the curve is normalized so that the area under it is unity, h takes the value ð��Þ1=2


because
1


ð��1=2Þ


ð1
�1


e�t 2=� 2


d t ¼ 1


Thus, the height of a normalized curve transforms into a pulse of unit height whereas a


pulse of unit height transforms to a pulse of width ð��Þ�1
.


If we consider a family of functions with progressively increasing h values and decreasing �
values, each satisfying the condition of unit area under their curves, we are led in the limit as the


height h ! 1 and the width �! 0 to an infinitely narrow pulse of finite area unity which


defines the Dirac delta ð�Þ function. The transform of such a function is the constant unity, and


Figures. 10.12a and b show the family of normalized Gaussian distributions and their transforms.


Figure 10.13 shows a number of common Fourier transform pairs.
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Figure 10.12 (a) A family of normalized Gaussian functions narrowed in the limit to Dirac’s delta
function; (b) the family of their Fourier transforms
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In wave mechanics the position x of a particle and its momentum px are conjugate


parameters and its Gaussian wave group representation may be Fourier transformed from x


to px space and vice versa. The Fourier Transform gives the amplitude of the wave function


but the probability of finding the particle at x or its having a given momentum px is


proportional to the square of the amplitude.
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Figure 10.13 Some common Fourier transform pairs
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The Dirac Delta Function, its Sifting Property and its Fourier
Transform


The Dirac � function is defined by


�ðxÞ ¼ 0 at x 6¼ 0


¼ 1 at x ¼ 0


and ð1
�1


�ðxÞdx ¼ 1


i.e., an infinitely narrow pulse centred on x ¼ 0. It is also known as the unit impulse


function.


A valuable characteristic is its sifting property, that isð1
�1


�ðx � x0Þf ðxÞdx ¼ f ðx0Þ


The Fourier Transform of �ðx � x0Þ ¼ e�ikx0 because by definition


Fð�ðx � x0ÞÞ ¼
ð1
�1


�ðx � x0Þe�ikxdx


so writing f ðxÞ ¼ e�ikx and applying the sifting property gives f ðx0Þ ¼ e�ikx0 . Note that


e�ikx0 ¼ eikx0 ¼ 1 for x0 ¼ 0.


From the form of the transform we see that if a function f ðxÞ is a sum of individual


functions then the Fourier Transform Fð f ðxÞÞ is the sum of their individual transforms.


Thus, if


f ðxÞ ¼
X


j


�ðx � xjÞ


then


Ff ðxÞ ¼
X


j


e�ikxj


Figure 10.14 shows two Dirac � functions situated at x ¼ � a
2


so that f ðxÞ ¼
�ðx � a


2
Þ þ �ðx þ a


2
Þ giving Fð f ðxÞÞ ¼ e


ika
2 þ e


�ika
2 ¼ 2 cos ka=2.


Convolution


Given two functions f ðxÞ and hðxÞ, their convolution, written


f ðxÞ � hðxÞ ¼
ð1
�1


f ðxÞhðxÞdx
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is the overlap area under the product of the two functions as one function scans across the


other. It the functions are two dimensional, f ðx; yÞ and hðx; yÞ, their convolution is the


volume overlap under their product.


To illustrate a one-dimensional convolution consider the rectangular pulse of length D in


Figure 10.15 convolved with an identical pulse. This is known as self-convolution. The


convolution will be the sum of the shaded areas such as that of Figure 10.15a as one pulse


slides over the other. We can see that the base length of the resulting convolved pulse will


be 2D and that it will be symmetric about its peak, that is, when the two pulses completely


overlap. If we consider the left-hand pulse as an infinite series of � functions, of which we


show a few, then Figure 10.15b shows that the integrated sum is an isosceles triangle of


base length 2D.


Another example is the convolution of a small triangular pulse with a rectangular pulse


length D, Figure 10.16. Again, we use the series of d functions to show the sum of the


components of the resulting convolution and its integrated form for an infinite series of d
functions. The length of the final pulse is again the sum of the lengths of the two pulses.


Such a pulse would result in the convolution of a rectangular pulse with an exponential


time function, for example, when a rectangular pulse is passed into an integrating network


formed by a series resistance and parallel condenser, Figure 10.17. Here, the exponential


time function of the network may be considered as fixed in time while the pulse performs


the scanning operation. Note in Figures 10.15, 10.16 and 10.17 that the component


contributions of the left hand pulses are summed in reverse order. This is explained in the


discussion following eq. 10.2.


A convolution f ðxÞ � hðxÞ is generally written in the form


gðx0Þ ¼
ð1
�1


f ðxÞhðx0 � xÞdx ð10:2Þ


This a particularly relevant form when we consider the Optical Transfer Function on page


391. There, x is an object space coordinate and x0 is an image space coordinate so the


convolution relates image to object. If the function hðx0 � xÞ is a localized pulse in


the object space and x0 lies within it on the object axis x then the pulse hðx0 � xÞ is reversed


− a 0
2


+ a
2


x


Figure 10.14 The Fourier transform of two Dirac � functions located at x ¼ �a=2 is 2 cos ka=2


Convolution 293







in image space (axis x0) so that its trailing edge becomes its leading edge. Figure 10.18(a)


shows the pulse on the object axis and Figure 10.18(b) shows the reversed pulse on the


image axis.


The product f ðxÞ hðx0 � xÞ exists only where the functions overlap and in Fig-


ure 10.18(b) gðx01Þ is the superposition of all the individual overlapping contributions that


D


D


D


D


D


D D D


(a)


2D


2D


Convolution


Components


(b)


Figure 10.15 (a) A convolution is the integral of all overlapping areas as one function scans
another. A rectangular pulse length D scans an identical pulse and the overlap area is shaded at one
point of the scanning. (b) The scanning pulse is represented by several Dirac d (impulse) functions
and the component overlap areas are summed. When the number of impulse functions is large the
sum of the components is integrated to become the triangular pulse
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exist at x01. The contribution to gðx01Þ at x01 by x1 and dx at x1 is f ðx1Þhðx01 � x1Þdx where


f ðx1Þ is a number which magnifies the pulse of Figure 10.18(b) to become the pulse of


Figure 10.18(c). Each value of x in the overlap region makes a contribution to gðx01Þ; x


values beyond the overlap make no contribution. The contributions begin when the leading


edge of hðx0 � xÞ reaches x01 and they cease when its trailing edge passes x01.


Note that by changing the variable x00 ¼ x0 � x in Equation (10.2).


f � h ¼ h � f


This result is also evident when we consider the Convolution Theorem in the next section.


Convolution


Components


Figure 10.16 The convolution of a triangular with a rectangular pulse using the method of Figure
10.15


t = 0 t = 0t = t1 t = t1


Figure 10.17 The convolution of Figure 10.16 is the same as that of a rectangular electrical pulse
passing through an integrating circuit formed by a series resistance and a parallel condenser
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x1
x′


f(x1) h (x′–x1)


x1′


(c)


x1


h(x′–x1)


x′
x1′


(b)


x′
x


f(x)


h(x′–x)


(a)


Figure 10.18 The function hðx0 � xÞ in the object space is reversed in the image space in Figure
10.18(b). (b) The convolution gðx01Þ is the superposition of all individual overlapping contributions to
f ðxÞhðx0 � xÞ that exist at x01. (c) The contribution made by f ðx1Þd x to gðx01Þ where f ðx1Þ is a number
which magnifies hðx01 � xÞ
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Returning to the convolution of the rectangular pulses in Figure 10.15 and taking the


left-hand pulse as f ðxÞ each impulse xi of the infinite series sweeps across the right-hand


pulse hðx0 � xÞ to give the triangular convolution gðx0Þ. If the left-hand pulse is now


hðx0 � xÞ sweeping across the right-hand pulse f ðxÞ with x0i as a fixed location in hðx0 � xÞ,
the series of overlaps, as x0i moves across f ðxÞ, gives the same triangular convolution.


The Convolution Theorem


The importance of the convolution process may be seen by considering the following.


When a signal, electrical or optical, passes through a system such as an amplifier or a


lens, the resulting output is a function of the original signal and the system response. We


have seen that a slit, in passing light from an optical source, may act as an angular filter,


restricting the amount of information it passes and superimposing its own transform on the


radiation passing through. An electrical filter can behave in a similar fashion.


Effectively there are two transformations, one into the intermediate system and one out


again.


A convolution reduces this to a single transformation. The transform of the intermediate


system is applied to the orginal function or signal and the resulting output is the integrated


product of each point operating on the transformed response.


The convolution theorem states that the Fourier transform of the convolution of two


functions is the product of the Fourier transforms of the individual functions, that is, if


gðx0Þ ¼ f ðxÞ � hðxÞ
then


FðgÞ ¼ Fðf � hÞ ¼ Fð f Þ � FðhÞ


The proof is straightforward.


The convolution gðx0Þ is a function of k, so its transform is


FðgÞ ¼ GðkÞ ¼
ð1
�1


gðx0Þe�ihx0dx0


¼
ð1
�1


� ð1
�1


f ðxÞhðx0 � xÞdx


�
e�ikx0dx0


¼
ð1
�1


� ð1
�1


hðx0 � xÞe�ikx0dx0
�


f ðxÞdx


Putting x0 � x ¼ y gives dy ¼ dx0 and e�ikx0 ¼ e�ikye�ikx and so


FðgÞ ¼ GðkÞ ¼
ð1
�1


f ðxÞe�ikxdx


ð1
�1


hðyÞe�ikydy


¼ Fð f Þ � FðhÞ ¼ FðhÞ � Fð f Þ


We can use this result to find the Fourier Transform of the resulting triangular pulse in


Figure 10.15(b). The slit may be seen as a rectangular pulse of width d and its Fourier
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Transform on page 288 gave its diffraction pattern as / sin�=� where � ¼ kld=2. Each of


the pulses in Figure 10.15(b) contributes a Fourier Transform / sin�=� where


� ¼ klD


2


so the Fourier Transform of the isosceles triangular pulse is / sin2�=�2.


Note that the analysis above is equally true if the arguments of the two functions are


exchanged under the convolution process so that we have f ðx0 � xÞ and hðxÞ. We use this in


the discussion on the Optical Transfer Function on page 393.


(Problems 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19)


Problem 10.1
After inspection of the two wave forms in the diagram what can you say about the values of the


constant, absence or presence of sine terms, cosine terms, odd or even harmonics, and range of


harmonics required in their Fourier series representation? (Do not use any mathematics.)


T


T


t


2 T


2 T


– T–2 T


t


t


t


Problem 10.2
Show that if a periodic waveform is such that each half-cycle is identical except in sign with the


previous one, its Fourier spectrum contains no even order frequency components. Examine the result


physically.


Problem 10.3
A half-wave rectifier removes the negative half-cycles of a pure sinusoidal wave y ¼ h sin x. Show


that the Fourier series is given by


y ¼ h


�
1 þ �


1 � 2
sin x � 2


1 � 3
cos 2x � 2


3 � 5
cos 4x � 2


5 � 7
cos 6x . . .


� �
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Problem 10.4
A full-wave rectifier merely inverts the negative half-cycle in Problem 10.3. Show that this doubles


the output and removes the undesirable modulating ripple of the first harmonic.


Problem 10.5
Show that f ðxÞ ¼ x2 may be represented in the interval �� by


f ðxÞ ¼ 2


3
� 2 þ


X
ð�1Þ n 4


n 2
cos nx


Problem 10.6
Use the square wave sine series of unit height f ðxÞ ¼ 4=�ðsin x þ 1


3
sin 3x þ 1


5
sin 5xÞ to show that


1 � 1
3
þ 1


5
� 1


7
¼ �=4


Problem 10.7
An infinite train of pulses of unit height, with pulse duration 2� and a period between pulses of T, is


expressed as


f ðtÞ ¼ 0 for � 1
2


T < t < ��
¼ 1 for � � < t < �


¼ 0 for � < t < 1
2


T


and


f ðt þ TÞ ¼ f ðtÞ


Show that this is an even function with the cosine coefficients given by


an ¼ 2


n�
sin


2�


T
n�


Problem 10.8
Show, in Problem 10.7, that as � becomes very small the values of an ! 4�=T and are independent


of n, so that the spectrum consists of an infinite set of lines of constant height and spacing. The


representation now has the same form in both time and frequency; such a function is called ‘self


reciprocal’. What is the physical significance of the fact that as � ! 0, an ! 0?


Problem 10.9
The pulses of Problems 10.7 and 10.8 now have amplitude 1=2� with unit area under each pulse.


Show that as � ! 0 the infinite series of pulses is given by


f ðtÞ ¼ 1


T
þ 2


T


X1
n¼1


cos 2�nt=T


Under these conditions the amplitude of the original pulses becomes infinite, the energy per pulse
remains finite and for an infinity of pulses in the train the total energy in the waveform is also
infinite. The amplitude of the individual components in the frequency representation is finite,
representing finite energy, but again, an infinity of components gives an infinite energy.
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Problem 10.10
The unit step function is defined by the relation


f ðtÞ ¼ 1 ðt > 0Þ
¼ 0 ðt < 0Þ


t0


1


f (t )


This is a very important function in physics and engineering, but it does not satisfy the criteria for


Fourier representation because its integral is not finite. A similar function of finite period will satisfy


the criteria. If this function is defined


f ðtÞ ¼ 1ð0 < t < TÞ
¼ 0 elsewhere


show that if the transform


Fð!Þ ¼
ð1


�1
f ðtÞ e�i!t d t ¼


ð T


0


e�i!t d t


¼ 1


i!
½1 � e i!T �


then


f ðtÞ ¼ 1


2�


ð1


�1
Fð!Þ e i!t d!


¼ 1


2
þ 1


2�


ð1


�1


1


i!
e i!t d!


(use the fact that for T very large


ð1


�1


1


i!
e i!ðt�TÞ d! ¼


ð1


�1


1


i!
e�i!T d! ¼ ��


Note that the integral for the second term of f ðtÞ gives �� for t < 0 and þ� for t > 0. This spectral


representation is shown in Figure 10.13.)


Problem 10.11
Optical wave trains emitted by radiating atoms are of finite length and only an infinite wave train


may be defined in terms of one frequency. The radiation from atoms therefore has a frequency


bandwidth which contributes to the spectral linewidth. The random phase relationships between


these wave trains create incoherence and produce the difficulties in obtaining interference effects


from separate sources.
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Let a finite length monochromatic wave train of wavelength �0 be represented by


f ðtÞ ¼ f0 e i2� 0 t


and be a cosine of constant amplitude f0 extending in time between � �=2. The distance l ¼ c� is


called the coherence length. This finite train is the superposition of frequency components of


amplitude FðÞ where the transform gives


f ðtÞ ¼
ð1


�1
FðÞ e i2�t d


so that


FðÞ ¼
ð1


�1
f ðt 0Þ e�i2�t 0 d t 0


¼
ðþ�=2


��=2


f0 e�i2�ð� 0Þt 0 d t 0


Show that


FðÞ ¼ f0�
sin½�ð �  0Þ� �
�ð � 0Þ�


and that the relative energy distribution in the spectrum follows the intensity distribution curve in a


single slit diffraction pattern.


Problem 10.12
Show that the total width of the first maximum of the energy spectrum of Problem 10.11 has a


frequency range 2� which defines the coherence length l of Problem 10.11 as �2
0=��.


Problem 10.13
For a ruby beam the value of � in Problem 10.12 is found to be 10 4 Hz and �0 ¼ 6:936 � 10�7 m.


Show that �� ¼ 1:6 � 10�17 m and that the coherence length l of the beam is 3 � 10 4 m.


Problem 10.14
The energy of the finite wave train of the damped simple harmonic vibrations of the radiating atom


in Chapter 2 was described by E ¼ E0 e�! 0t=Q. Show from physical arguments that this defines a


frequency bandwidth in this train of �! about the frequency !0, where the quality factor


Q ¼ ! 0=�!. (Suggested line of argument—at the maximum amplitude all frequency components


are in phase. After a time � the frequency component !0 has changed phase by !0�. Other


components have a phase change which interfere destructively. What bandwidth and phase change is


acceptable?)


Problem 10.15
Consider Problem 10.14 more formally. Let the damped wave be represented as a function of time by


f ðtÞ ¼ f 0 e i2� 0t e�t=�


where f 0 is constant and � is the decay constant.
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Use the Fourier transform to show that the amplitudes in the frequency spectrum are given by


FðÞ ¼ f 0


1=� þ i2�ð � 0Þ


Write the denominator of FðÞ as r e i� to show that the energy distribution of frequencies in the
region of  � 0 is given by


jFðÞj 2 ¼ f 2
0


r 2
¼ f 2


0


ð1=�Þ 2 þ ð!� !0Þ 2


Problem 10.16
Show that the expression jFðÞj 2


of Problem 10.15 is the resonance power curve of Chapter 3; show


that it has a width at half the maximum value ð f0�Þ 2
which gives � ¼ 1=�� , and show that a


spectral line which has a value of �� in Problem 10.12 equal to 3 � 10�9 m has a finite wave train of


coherence length equal to 32 � 10�6 m (32 mm) if �0 ¼ 5:46 � 10�7 m.


Problem 10.17
Sketch the self-convolution of the double slit function shown in Figure Q 10.17.


d


Figure Q.10.17


Problem 10.18
Sketch the convolution of the two functions in Figure Q 10.18 and use the convolution theorem to


find its Fourier transform.


d d


×


Figure Q.10.18
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Problem 10.19
The convolution of two identical circles of radius r is very important in the modern method of testing


lenses against an ideal diffraction limited criterion.


In Figure Q 10.19 show that the area of overlap is


R


r


r


θ
A


Figure Q.10.19


A ¼ r2ð2�� 2sin � cos �Þ
and show for


R  2r


that the convolution


OðRÞ ¼ r2 2 cos �1 R


2r
� 2 1 � R2


4r2


� �1
2 R


2r


" #


Sketch OðRÞ for O  R  2r


Apart from a constant the linear operator ÔO is known as the modulation factor of the


optical transfer function.


Summary of Important Results
Fourier Series
Any function may be represented in the interval �� by


f ðxÞ ¼ 1


2
a0 þ


Xn


1


an cos nx þ
Xn


1


bn sin nx
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where


an ¼ 1


�


ð 2�


0


f ðxÞ cos nx dx


and


bn ¼ 1


�


ð 2�


0


f ðxÞ sin nx dx


Fourier Integral
A single non-periodic pulse may be represented as


f ðtÞ ¼
ðþ1


�1


ðþ1


�1
f ðt 0Þ e�i2�t 0 d t 0


� �
ei2�t d


or as


f ðtÞ ¼
ðþ1


�1
FðÞ e i2�t d


where


FðÞ ¼
ðþ1


�1
f ðt 0Þ e�i2�t d t 0


f ðtÞ and FðÞ are Fourier Transforms of each other. When t is replaced by x and  by k the


right hand side of each transform has a factor 1=
ffiffiffiffiffiffi
2�


p
. The Fourier Transform of a


rectangular pulse has the shape of sin�=�. (Important in optical diffraction.)
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Waves in Optical Systems


Light. Waves or Rays?


Light exhibits a dual nature. In practice, its passage through optical instruments such as


telescopes and microscopes is most easily shown by geometrical ray diagrams but the fine


detail of the images formed by these instruments is governed by diffraction which, together


with interference, requires light to propagate as waves. This chapter will correlate the


geometrical optics of these instruments with wavefront propagation. In Chapter 12 we shall


consider the effects of interference and diffraction.


The electromagnetic wave nature of light was convincingly settled by Clerk–Maxwell in


1864 but as early as 1690 Huygens was trying to reconcile waves and rays. He proposed


that light be represented as a wavefront, each point on this front acting as a source


of secondary wavelets whose envelope became the new position of the wavefront,


Figure 11.1(a). Light propagation was seen as the progressive development of such a


process. In this way, reflection and refraction at a plane boundary separating two optical


media could be explained as shown in Figure 11.1(b) and (c).


Huygens’ theory was explicit only on those contributions to the new wavefront directly


ahead of each point source of secondary waves. No statement was made about propagation


in the backward direction nor about contributions in the oblique forward direction. Each of


these difficulties is resolved in the more rigorous development of the theory by Kirchhoff


which uses the fact that light waves are oscillatory (see Appendix 2, p. 547).


The way in which rays may represent the propagation of wavefronts is shown in


Figure 11.2 where spherically diverging, plane and spherically converging wavefronts are


moving from left to right. All parts of the wavefront (a surface of constant phase) take the


same time to travel from the source and all points on the wavefront are the same optical


distance from the source. This optical distance must take account of the changes of


refractive index met by the wavefront as it propagates. If the physical path length is


measured as x in a medium of refractive index n then the optical path length in the medium


is the product nx. In travelling from one point to another light chooses a unique optical path


which may always be defined in terms of Fermat’s Principle.
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Fermat’s Principle


Fermat’s Principle states that the optical path length has a stationary value; its first order


variation or first derivative in a Taylor series expansion is zero. This means that when an


optical path lies wholly within a medium of constant refractive index the path is a straight


line, the shortest distance between its end points, and the light travels between these points


in the minimum possible time. When the medium has a varying refractive index or the path


crosses the boundary between media of different refractive indices the direction of the path


always adjusts itself so that the time taken between its end points is a minimum. Fermat’s


Principle is therefore sometimes known as the Principle of Least Time. Figure 11.3 shows


examples of light paths in a medium of varying refractive index. As examples of light


meeting a boundary between two media we use Fermat’s Principle to derive the laws of


reflection and refraction.


The Laws of Reflection


In Figure 11.4a Fermat’s Principle requires that the optical path length OSI should be a


minimum where O is the object, S lies on the plane reflecting surface and I is the point on


the reflected ray at which the image of O is viewed. The plane OSI must be perpendicular


to the reflecting surface for, if reflection takes place at any other point S 0 on the reflecting


surface where OSS 0 and ISS 0 are right angles then evidently OS 0 > OS and IS 0 > IS, giving


OS 0I > OSI.


The laws of reflection also require, in Figure 11.4a that the angle of incidence i equals


the angle of reflection r. If the coordinates of O, S and I are those shown and the velocity of


light propagation is c then the time taken to traverse OS is


t ¼ ðx2 þ y2Þ1=2=c


Ray


Converging
wavefront


Diverging
wavefront


Plane wavefront


Figure 11.2 Ray representation of spherically diverging, plane and spherically converging
wavefronts
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to sun
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Rare atmosphere


Apparent
reflecting
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Eye
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(b)
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Figure 11.3 Light takes the shortest optical path in a medium of varying refractive index. (a) A
light ray from the sun bends towards the earth in order to shorten its path in the denser atmosphere.
The sun remains visible after it has passed below the horizon. (b) A light ray avoids the denser
atmosphere and the road immediately below warm air produces an apparent reflection


xx


ii


r  ′
n  ′


S′


yy


n < n  ′


S(x, 0)S(x, 0)


0(0, y )0(0, y )


I(X, Y )


I(X, y )


r  


(b)(a)


Figure 11.4 The time for light to follow the path OSI is a minimum (a) in reflection, when OSI
forms a plane perpendicular to the reflecting surface and îi ¼ r̂r ; and (b) in refraction, when
n sin i ¼ n 0 sin r 0 (Snell’s Law)
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and the time taken to traverse SI is


t 0 ¼ ½ðX � xÞ2 þ y2�1=2=c


so that the total time taken to travel the path OSI is


T ¼ t þ t 0


The position of S is now varied along the x axis and we seek, via Fermat’s Principle of


Least Time, that value of x which minimizes T, so that


dT


dx
¼ x


cðx2 þ y2Þ1=2
� X � x


c½ðX � xÞ2 þ y2�1=2
¼ 0


But
x


ðx2 þ y2Þ1=2
¼ sin i


and


X � x


½ðX � xÞ2 þ y2�1=2
¼ sin r


Hence


sin i ¼ sin r


and


îi ¼ r̂r


The Law of Refraction


Exactly similar arguments lead to Snell’s Law, already derived on p. 256.


Here we express it as


n sin i ¼ n 0 sin r 0


where i is the angle of incidence in the medium of refractive index n and r 0 is the angle of


refraction in the medium of refractive index n 0ðn 0 > nÞ. In Figure 11.4b a plane boundary


separates the media and light from O (0, y) is refracted at S (x, 0) and viewed at I (X, Y) on


the refracted ray. If v and v 0 are respectively the velocities of light propagation in the media


n and n 0 then OS is traversed in the time


t ¼ ðx2 þ y2Þ1=2=v


and SI is traversed in the time


t 0 ¼ ½ðX � xÞ2 þ Y 2�1=2=v 0
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The total time to travel from O to I is T ¼ t þ t 0 and we vary the position of S along the x


axis which lies on the plane boundary between n and n 0, seeking that value of x which


minimizes T. So


dT


dx
¼ 1


v


x


ðx2 þ y2Þ1=2
� 1


v 0
ðX � xÞ


½ðX � xÞ2 þ Y 2�1=2
¼ 0


where


x


ðx2 þ y2Þ1=2
¼ sin i


and


ðX � xÞ
½ðX � xÞ2 þ Y 2�1=2


¼ sin r 0


But


1


v
¼ n


c


and


1


v 0 ¼
n 0


c


Hence


n sin i ¼ n 0 sin r 0


Rays and Wavefronts


Figure 11.2 showed the ray representation of various wavefronts. In order to reinforce the


concept that rays trace the history of wavefronts we consider the examples of a thin lens


and a prism.


The Thin Lens


In Figure 11.5 a plane wave in air is incident normally on the plane face of a plano convex


glass lens of refractive index n and thickness d at its central axis. Its spherical face has a


radius of curvature R 	 d. The power of a lens to change the curvature of a wavefront is


the inverse of its focal length f. A lens of positive power converges a wavefront, negative


power diverges the wavefront.


Simple rays optics gives the power of the plano convex lens as


P ¼ 1


f
¼ ðn � 1Þ 1


R


but we derive this result from first principles that is, by considering the way in which the


lens modifies the wavefront.
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At the central axis the wavefront takes a time t ¼ nd=c to traverse the thickness d. At a


distance r from the axis the lens is thinner by an amount r 2=2R (using the elementary


relation between the sagitta, arc and radius of a circle) so that, in the time t ¼ nd=c, points


on the wavefront at a distance r from the axis travel a distance


ðd � r 2=2RÞ


in the lens plus a distance ðr 2=2R þ zÞ in air as shown in the figure. Equating the times


taken by the two parts of the wave front we have


nd=c ¼ ðn=cÞðd � r 2=2RÞ þ ð1=cÞðz þ r 2=2RÞ
which yields


z ¼ ðn � 1Þr 2=2R


But this is again the relation between the sagitta z, its arc and a circle of radius R=ðn � 1Þ
so, in three dimensions, the locus of z is a sphere of radius R=ðn � 1Þ and the emerging


spherical wavefront converges to a focus at a distance


f ¼ R=ðn � 1Þ


(Problems 11.1, 11.2, 11.3)


The Prism


In Figure 11.6 a section, height y, of a plane wavefront in air is deviated through an angle �
when it is refracted through an isosceles glass prism, base l, vertex angle � and refractive


Plane
wavefront


r


r 2


z


d R /(n−1)


n


2R


Converging wavefront


Figure 11.5 A plane wavefront is normally incident on a plano-convex lens of refractive index n
and thickness d at the central axis. The radius of the curved surface R 	 d. The wavefront is a surface
of constant phase and the optical path length is the same for each section of the wavefront. At a
radius r from the central axis the wavefront travels a shorter distance in the denser medium and the
lens curves the incident wavefront which converges at a distance R=ðn � 1Þ from the lens
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index n. Experiment shows that there is one, and only one, value of the incident angle i for


which the angle of deviation is a minimum ¼ �min. It is easily shown using ray optics that


this unique value of i requires the passage of the wavefront through the prism to be


symmetric about the central vertical axis as shown in the figure so that the incident angle i


equals the emerging angle i 0. Equating the lengths of the optical paths AVA 0 and BB 0ð¼ nlÞ
followed by the edges of the wavefront section gives the familiar result


sin
�min þ �


2


� �
¼ n sin


�


2


which is used in the standard experiment to determine n, the refractive index of the prism.


Now there is only one value of i which produces minimum deviation and this leads us to


expect that the passage of the wavefront will be symmetric about the central vertical axis


for if a plane mirror (M in the figure) is placed parallel to the emerging wavefront the


wavefront is reflected back along its original path, and if i 6¼ i 0 there would be two values


of incidence, each producing minimum deviation. At i for minimum deviation any rotation


increases i 0.


β


α α′


θ


A A′


V


i


y y ′


l


i ′


B B′


Central
vertical
axis


M


Central
vertical
axis


Mirror


Figure 11.6 A plane wavefront suffers minimum deviation ð�minÞ when its passage through a prism
is symmetric with respect to the central vertical axis ði ¼ i 0Þ. The wavefront obeys the Optical
Helmholtz Condition that ny tan� is a constant where n is the refractive index, y is the width of the
wavefront and � is shown. (Here � ¼ � 0Þ
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However, the real argument for symmetry from a wavefront point of view depends on the


optical Helmholtz equation which we shall derive on p. 321. This states that for a plane


wavefront the product ny tan� remains constant as it passes through an optical system


irrespective of the local variations of the factors n, y and tan�. Now the wavefront has the


same width on entry into and exit from the prism so y ¼ y 0 and although n changes at the


prism faces the initial and final medium for the wavefront is air where n ¼ 1.


Hence, from the optical Helmholtz equation tan� ¼ tan� 0 in Figure 11.6. It is evident


that as long as its width y ¼ y 0 the wavefront section will turn through a minimum angle


when the physical path length BB 0 followed by its lower edge is a maximum with respect


to AVA 0, the physical path length of its upper edge.


Ray Optics and Optical Systems


An optical system changes the curvature of a wavefront. It is formed by one or more optical


surfaces separating media of different refractive indices. In Fig. 11.7 rays from the object


point L0 pass through the optical system to form an image point L 0. When the optical


surfaces are spherical the line joining L0 and L 0, which passes through the centres of


curvature of the surfaces, is called the optical axis. This axis cuts each optical surface at its


pole. If the object lies in a plane normal to the optical axis its perfect image lies in a


conjugate plane normal to the optical axis. Conjugate planes cut the optical axis at


conjugate points, e.g. L0 and L 0. In Figure 11.7 the plane at þ1 has a conjugate focal


plane cutting the optical axis at the focal point F. The plane at �1 has a conjugate focal


plane cutting the optical axis at the focal point F 0.


Paraxial Rays


Perfect geometrical images require perfect plane and spherical optical surfaces and in a real


optical system a perfect spherical optical surface is obtained by using only that part of the


wavefront close to the optical axis. This means that all angles between the axis and rays are


very small. Such rays are called paraxial rays.


Positive
curvature


Negative
curvature


Optic axisPole


Direction of
incident light


L 0 F F ′ L ′


+ ∞− ∞


Figure 11.7 Optical system showing direction of incident light from left to right and optical
surfaces of positive and negative curvature. Rays from L 0 pass through L 0 and this defines L 0 and L 0


as conjugate points. The conjugate point of F is at þ1, the conjugate point of F 0 is at �1
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Sign Convention


The convention used here involves only signs of lengths and angles. The direction of


incident light is positive and is always taken from left to right. Signs for horizontal and


vertical directions are Cartesian. If AB ¼ l then BA ¼ �l. The radius of curvature of a


surface is measured from its pole to its centre so that, in Figure 11.7, the convex surface


presented to the incident light has a positive radius of curvature and the concave surface


has a negative radius of curvature.


The Cartesian convention with origin O at the right angles of Figure 11.8 gives the angle


between a ray and the optical axis the sign of its tangent.


If the angle between a ray and the axis is � then, for paraxial rays


sin� ¼ tan� ¼ �


and


cos� ¼ 1


so that Snell’s Law of Refraction


n sin i ¼ n 0 sin r 0


becomes


ni ¼ n 0r 0


Power of a Spherical Surface


In Figure 11.9(a) and (b) a spherical surface separates media of refractive indices n and n 0.
Any ray through L0 is refracted to pass through its conjugate point L 0. The angles are


exaggerated so that the base of h is very close to the pole of the optical surface which is


taken as the origin. In Figure 11.9(a) the signs of R, l 0 and � 0 are positive with l and �
negative. In Figure 11.9(b) R, l, l 0 , � and � 0 are all positive quantities. In both figures


Snell’s Law gives


ni ¼ n 0r 0


0
++


+


+


−
−


−


−Direction of
incident light


Figure 11.8 Sign convention for lengths is Cartesian measured from the right angles at O. Angles
take the sign of their tangents. O is origin of measurements
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i.e.


nð�� �Þ ¼ n 0ð�� � 0Þ
or


n 0� 0 � n� ¼ ðn 0 � nÞ� ¼ n 0 � n


R


� �
h ¼ Ph ð11:1Þ


Thus


n 0


l 0
� n


l
¼ n 0 � n


R
¼ P ð11:2Þ


where P is the power of the surface. For n 0 > n the power P is positive and the surface


converges the wavefront. For n 0 < n, P is negative and the wavefront diverges. When the


radius of curvature R is measured in metres the units of P are dioptres.


l


l


i


i


i


n


n


α


α


α′


α′


θ


θ


h


h


R


R


L 0
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C


R, l, l ′, α, α′ are positive


R, l ′, α′, are positive
l, α are negative


l ′


l ′


L ′


i ′


i ′


n ′


n ′


(a)


(b)


Figure 11.9 Spherical surface separating media of refractive indices n and n 0. Rays from L 0 pass
through L 0. Snell’s Law gives the power of the surface as


P ¼ n 0


l 0
� n


l
¼ n 0 � n


R
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Magnification by the Spherical Surface


In Figure 11.10 the points QQ 0 form a conjugate pair, as do L0L 0. The ray QQ 0 passes


through C the centre of curvature, L0Q is the object height y, L 0Q 0 is the image height y 0 so


ni ¼ n 0r 0


gives


ny=l ¼ n 0y 0=l 0


or


nyh=l ¼ n 0y 0h=l 0


that is


ny� ¼ n 0y 0� 0 ð11:3Þ
This is the paraxial form of the optical Helmholtz equation.


The Transverse Magnification is defined as


MT ¼ y 0=y ¼ nl 0=n 0l:


The image y 0 is inverted so y and y 0 (and l and l 0) have opposite signs.


The Angular Magnification is defined as


M� ¼ � 0=�


Note that


MT ¼ n=n 0M�


which, being independent of y, applies to any point on the object so that the object in the


plane L0Q is similar to the image in the plane L 0Q 0.


α′α


n n ′
y ′
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Q′


Q


lL 0
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l ′
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i
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Figure 11.10 Magnification by a spherical surface. The paraxial form of the optical Helmholtz
equation is ny� ¼ n 0y 0� 0 so Transverse Magnification MT ¼ y 0=y ¼ nl 0=ln 0 Angular Magnification
M� ¼ � 0=�. Note that the image is inverted so y and y 0 (and l and l 0) have opposite signs
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A series of optical surfaces separating media of refractive indices n, n 0n 00 yields the


expression


ny� ¼ n 0y 0� 0 ¼ n 00y 00� 00


which is the paraxial form of the optical Helmholtz equation.


Power of Two Optically Refracting Surfaces


If Figure 11.11 the refracting surfaces have powers P1 and P2, respectively. At the first


surface equation (11.1) gives


n1�1 � n� ¼ P1h1


and at the second surface


n 0� 0 � n1�1 ¼ P2h2


Adding these equations gives


n 0� 0 � n� ¼ P1h1 þP2h2


If the object is located at �1 so that � ¼ 0 we have


n 0� 0 ¼ P1h1 þP2h2


or


� 0 ¼ 1


n 0 ðP1h1 þP2h2Þ


Object
space


Image
spaceFirst refractive


surface
Second refractive
surface


− ∞
α = 0 α1


α1α′


n ′n1n


h1


h2


2


1


Figure 11.11 Two optically refracting surfaces of power P 1 and P 2 have a combined power of


P ¼ 1


h 1


ðP 1h1 þP 2h2Þ
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This gives the same image as a single element of power P if


� 0 ¼ 1


n 0 ðP1h1 þP2h2Þ ¼
1


n 0Ph1


where


P ¼ 1


h1


ðP1h1 þP2h2Þ ð11:4Þ


is the total power of the system. This is our basic equation and we use it first to find the


power of a thin lens in air.


Power of a Thin Lens in Air (Figure 11.12)


Equation (11.2) gives


n 0


l 0
� n


l
¼ n 0 � n


R
¼ P


for each surface, so that in Figure 11.12


P1 ¼ ðn1 � 1Þ=R1


and


P2 ¼ ð1 � n1Þ=R2


From equation (11.4)


P ¼ 1


h1


ðP1h1 þP2h2Þ


with


h1 ¼ h2


h


α = 0


n = 1


h1 = h2


n ′ = 1
f  ′


n1


R1 R2


α′
F ′


Figure 11.12 A thin lens of refractive index n1, and radii of surface curvatures R 1 and R2 has a
power


P ¼ ðn 1 � 1Þ 1


R1


� 1


R2


� �
¼ 1


f 0


where f 0 is the focal length. In the figure R1 is positive and R2 is negative
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we have


P ¼ P1 þP2


so the expression for the thin lens in air with surfaces of power P1 and P2 becomes


P ¼ 1


l 0
� 1


l
¼ ðn1 � 1Þ 1


R1


� 1


R2


� �
¼ 1


f 0


where f 0 is the focal length.


Applying this result to the plano convex lens of p. 311 we have R1 ¼ 1 and R2 negative


from our sign convention. This gives a positive power which we expect for a converging


lens.


Effect of Refractive Index on the Power of a Lens


Suppose, in Figure 11.13, that the object space of the lens remains in air ðn ¼ 1Þ but that


the image space is a medium of refractive index n 0
2 6¼ 1. How does this affect the focal


length in the medium n 0
2?


If P is the power of the lens in air we have


n 0
2�


0 � n� ¼ Ph1 ð11:5Þ
and for


� ¼ 0


we have


� 0 ¼ Ph1=n 0
2 ¼ h1=n 0


2 f 0


where f 0 is the focal length in air.


If f 0
2 is the focal length in the medium n 0


2 then


f 0
2�


0 ¼ h1


h1


n1


f2′


n2′


α′


α = 0


n = 1


≠ 1


Figure 11.13 The focal length of a thin lens measured in the medium n 0
2 is given by f 0


2 ¼ n 0
2 f 0


where f 0 is the focal length of the lens measured in air
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so


� 0 ¼ h1=f 0
2 ¼ h1=n 0


2 f 0


giving


f 0
2 ¼ n 0


2 f 0


Thus, the focal length changes by a factor equal to the refractive index of the medium in


which it is measured and the power is affected by the same factor.


If the lens has a medium n0 in its object space and a medium ni in its image space then


the respective focal lengths f0 and f i in these spaces are related by the expression


f i=f0 ¼ �ni=n0 ð11:6Þ


where the negative signs shows that f0 and f i are measured in opposite directions ð f0 is


negative and f i is positive).


Principal Planes and Newton’s Equation


There are two particular planes normal to the optic axis associated with every lens element


of an optical system. These planes are called principal planes or unit planes because


between these planes there is unit transverse magnification so the path of every ray between


them is parallel to the optic axis. Moreover, any complex optical system has two principal


planes of its own. In a thin lens the principal planes coincide.


The principal planes of a single lens do not, in general, coincide with its optical surfaces;


focal lengths, object and image distances are measured from the principal planes and not


from the optical surfaces. In Figure 11.14, PH and P 0H 0 define the first and second
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x ′


y ′


l ′


f ′
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conjugate to − ∞
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Figure 11.14 Between the principal planes PH and P 0H 0 of a lens or lens system there is unit
magnification and rays between these planes are parallel to the optic axis. Newton’s equation defines
x x 0 ¼ f f 0. The optical Helmholtz equation is ny� ¼ constant for paraxial rays and ny tan� ¼
constant for rays from 1
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principal planes, respectively, of a lens or optical system and PF and P 0F 0 are respectively


the first and second focal lengths. The object and image planes cut the optic axis in L0 and


L 0
0, respectively.


The ray LH parallel to the optic axis proceeds to H 0 and thence through F 0 the second


focal point. The rays LH and H 0F 0 meet at H 0 and therefore define the position of the


second principal plane, P 0H 0. The position of the first principal plane may be found in a


similar way.


If Figure 11.14, the similar triangles FL0L and FPQ give y=y 0 ¼ x=f where, measured


from P, only y is algebraically positive. The similar triangles F 0L 0
0L 0 and F 0P 00H 0 give


y=y 0 ¼ f 0=x 0;


where, measured from P 0, only y 0 is algebraically negative.


We have, therefore,


x=f ¼ f 0=x 0;


where x and f are negative and x 0 and f 0 are positive.


Thus,


xx 0 ¼ f f 0


This is known as Newton’s equation.


If l, the object distance, and l 0, the image distance, are measured from the principal


planes as in Figure 11.14, then


l ¼ f þ x and l 0 ¼ f 0 þ x 0


and Newton’s equation gives


xx 0 ¼ ðl � f Þðl 0 � f 0Þ ¼ ll 0 � l 0f � l f 0 þ f f 0 ¼ f f 0


so that


f 0


l 0
þ f


l
¼ 1


But from n f 0 ¼ �n 0f (equation (11.6)) we have


n 0


l 0
� n


l
¼ n 0


f 0 ¼
�n


f
¼ P


the power of the lens.


Optical Helmholtz Equation for a Conjugate Plane at Infinity


Suppose now that the object is no longer located at L0L but at infinity so that the ray LH


originates at one point from the distant object while the ray LFQ comes from a point on the


object much more distant from the optic axis.
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We still have from triangle F 0P 0H 0 that


y ¼ f 0 tan� 0


and from triangle FPQ that


y 0 ¼ f tan�


so


f tan�


f 0 tan� 0 ¼
y


y 0 and
f


f 0 y tan� ¼ y 0 tan� 0


But


f


f 0 ¼
�n


n 0


so


ny tan� ¼ �n 0y 0 tan� 0


(Note that �; � 0 and y 0 are negative.)


This form of the Helmholtz equation applies when one of the conjugate planes is at


infinity and is to be compared with the general unrestricted form of the Helmholtz equation


for paraxial rays


ny� ¼ n 0y 0� 0


The infinite conjugate form ny tan� ¼ constant is valid when applied to the prism of p. 312


because the plane wavefront originated at infinity.


(Problems 11.4, 11.5, 11.6, 11.7, 11.8)


The Deviation Method for (a) Two Lenses and (b) a Thick Lens


Figure 11.11 illustrated how the deviation of a ray through two optically refracting surfaces


could be used to find the power of a thin lens. We now apply this process to (a) a


combination of two lenses and (b) a thick lens in order to find the power of these systems


and the location of their principal planes. We have already seen in equation (11.5), which


may be written


n 0
1�


0 � n1� ¼ P1y ð11:7Þ


where P1 is the power of the first lens in Figure 11.15a or the power of the first refracting


surface in Figure 11.15b. If the incident ray is parallel to the optic axis, then � ¼ 0 and we


have


n 0
1�


0 ¼ P1y1 ð11:8Þ


322 Waves in Optical Systems







At the second lens or refracting surface


n2�2 � n 0
1�


0
1


so


n 0
2�


0
2 � n 0


1�
0
1 ¼ P2y2 ð11:9Þ


Equation (11.8) plus equation (11.9) gives


n 0
2�


0
2 ¼ P1y1 þP2y2 ð11:10Þ


Now the incident ray strikes the principal plane P 0 at a height y1 so, extrapolating the ray


from F 0, the focal point of the system, through the plane P 0
2 to the plane P 0, we have


n 0
2�


0
2 ¼ Py1 ð11:11Þ


where P is the power of the complete system.
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Figure 11.15 Deviation of a ray through (a) a system of two lenses and (b) a single thick lens. P 0 is
a principal plane of the system. All the significant optical properties may be derived via this method
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From equations (11.10) and (11.11) we have


Py1 ¼ P1y1 þP2y2 ð11:12Þ


Moreover, Figure 11.15 shows that, algebraically


y2 ¼ y1 � d� 0
1


which, with equation (11.8) gives


y2 ¼ y1 �
d


n 0
1


P1y1 ¼ y1 � �ddP1y1; ð11:13Þ


where


�dd ¼ d=n 0
1


This, with equation (11.12), gives


P ¼ P1 þP2 � �ddP1P2 ð11:14Þ


where P is the power of the whole system.


From Figure 11.15 we have algebraically


P 0
2P 0 ¼ � y1 � y2


� 0
2


which with equations (11.11) and (11.13) gives


P 0
2P 0 ¼ �n 0


2
�ddP1


P
ð11:15Þ


For a similar ray incident from the right we can find


P1P ¼ n1
�ddP2


P


where P is the first principal plane (not shown in the figures).


A more significant distance for the thick lens of Figure 11.15(b) is P2F 0 the distance


between the second refracting surface and the focal point F 0.
Now


P2F 0 ¼ P 0F 0 � P 0P 0
2


which with


P 0F 0 ¼ n 0
2=P ð11:16Þ
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gives


P2F 0 ¼ n 0
2


P
� n 0


2
�ddP1


P


¼ n 0
2


P
ð1 � �ddP1Þ ð11:17Þ


We shall see in the following section that the factor 1 � �ddP1 and the power P of the


system arise quite naturally in the matrix treatment of this problem.


The Matrix Method


Tracing paraxial rays through an optical system involves the constant repetition of two


consecutive processes and is particularly suited to matrix methods.


A refracting R process carries the ray from one medium across a refracting surface into a


second medium from where it is taken by a transmitting T process through the second


medium to the next refracting surface for R to be repeated. Both R and T processes and


their products are represented by 2  2 matrices.


An R process is characterized by


n 0� 0 � n� ¼ P1y ð11:7Þ


which changes n� but which leaves y unaffected.


We write this in the form


��� 0 � ��� ¼ P1y ð11:18Þ
where


��� i ¼ ni� i


The reader should review Figure 11.8 for the sign convention for angles.


A T process is characterized by


y 0 ¼ y � �dd 0 ��� 0 ð11:19Þ


which changes y but leaves ��� unaffected. The thick lens of the last section demonstrates the


method particularly well and reproduces the results we have already found.


In Figure 11.16 note that


n2�2 � n 0
1�


0
1


that is


���2 ¼ ��� 0
1


We express equations (11.18) and (11.19) in a suitable 2  2 matrix form by writing them


as separate pairs.
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For R we have


��� 0
1 ¼ ���1 þP1y1


where P1 is the power of the first refracting surface and


y 0
1 ¼ 0���1 þ 1y1


so, in matrix form we have


��� 0
1


y 0
1


� �
¼ 1 P1


0 1


� �
���1


y1


� �
¼ R1


���1


y1


� �


This carries the ray across the first refracting surface.


For T we have
���2 ¼ 1��� 0


1 þ 0y 0
1


y2 ¼ � �dd 0
1 ���


0
1 þ 1y 0


1


where ���2 ¼ ��� 0
1, so


���2


y2


� �
¼


1 0


��dd 0
1 1


� �
��� 0


1


y 0
1


� �
¼ T12


��� 0
1


y 0
1


� �


This carries the ray through the lens between its two refracting surfaces.


At the second refracting surface we repeat R to give


��� 0
2 ¼ 1���2 þP2 y2


y 0
2 ¼ 0���2 þ 1y2


or


��� 0
2


y 0
2


� �
¼ 1 P2


0 y2


� �
¼ R2


���2


y2


� �


d


n1 n1 = n2
n2′ 


y1 = y1′ 


′ 


′ 


y2 = y2′ 


α1


α1


α1


′ α2


′ α2


α2


21


Figure 11.16 The single lens of Figure 11.15 is used to demonstrate the equivalence of the
deviation and matrix methods for determining the important properties of a lens system. The matrix
method is easily extended to a system of many optical elements
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Therefore


��� 0
2


y 0
2


� �
¼ R2


���2


y2


� �
¼ R12T12


��� 0
1


y 0
1


� �
¼ R2T12R1


���1


y1


� �


¼
1 P2


0 1


� �
1 0


� �dd 0
1 1


� �
1 P1


0 1


� �
���1


y1


� �


which, after matrix multiplication, gives


��� 0
2


y 0
2


� �
¼


1 � �dd 0
1P2 P1 þP2 � �dd 0


1P1P2


� �dd 0
1 1 � �dd 0


1P1


" #
���1


y1


� �


Writing


R2T12R1 ¼ a11 a12


a21 a22


� �


we see that a12 is the power P of the thick lens (equation (11.14)) and that a22 apart from


the factor n02=P is the distance between the second refracting surface and the second focal


point. The product of the coefficient a11 and n1=P gives the separation between the first


focal point and the first refracting surface. Note, too, that a11 and a22 enable us to locate


the principal planes with respect to the refracting surfaces.


The order of the matrices for multiplication purposes is the reverse of the progress of the


ray through R1T12R2, etc.


If the ray experiences a number J of such transformations, the general result is


��� 0
J


y 0
J


� �
¼ RJTJ�1;J RJ�1 . . .R2T12R1


���1


y1


� �


The product of all these 22 matrices is itself a 22 matrix.


It is important to note that the determinant of each matrix and of their products is unity,


which implies that the column vector represents a property which is invariant in its passage


through the system.


The components of the column vector are, of course, ���1y1; that is, n� and y and we


already know that for paraxial rays the Helmholtz equation states that the product ny�
remains constant throughout the system.


(Problems 11.9, 11.10, 11.11)


Problem 11.1
Apply the principle of p. 311 to a thin bi-convex lens of refractive index n to show that its power is


P ¼ ðn � 1Þ 1


R1


� 1


R2


� �


where R 1 and R2, the radii of curvature of the convex faces, are both much greater than the thickness


of the lens.


The Matrix Method 327







Problem 11.2
A plane parallel plate of glass of thickness d has a non-uniform refractive index n given


by n ¼ n0 � �r 2 where n 0 and � are constants and r is the distance from a certain line perpendicular


to the sides of the plate. Show that this plate behaves as a converging lens of focal length 1=2�d.


Problem 11.3
For oscillatory waves the focal point F of the converging wavefront of Figure 11.17 is located where


Huygens secondary waves all arrive in phase: the point F 0 vertically above F receives waves whose


total phase range �	 depends on the path difference AF 0–BF 0. When F 0 is such that �	 is 2
 the


resultant amplitude tends to zero. Thus,


F


F′
P


B


A


θ


Figure 11.17


the focus is not a point but a region whose width x depends on the wavelength � and the angle �
subtended by the spherical wave. If PF 0 is perpendicular to BF the phase at F 0 and P may be


considered the same. Show that the width of the focal spot is given by x ¼ �=sin �. Note that sin � is


directly related to the f=d ratio for a lens (focal length/diameter) so that x defines the minimum size


of the image for a given wavelength and a given lens.


Problem 11.4
As an object moves closer to the eye its apparent size grows with the increasing angle it subtends at


the eye. A healthy eye can accommodate (that is, focus) objects from infinity to about 25 cm, the


closest ‘distance of distinct vision’. Beyond this ‘near point’ the eye can no longer focus and a


magnifying glass is required. A healthy eye has a range of accommodation of 4 dioptres (1/1 to


1/0.25 m). If a man’s near point is 40 cm from his eye, show that he needs spectacles of power equal


to 1.5 dioptres. If another man is unable to focus at distances greater than 2 m, show that he needs


diverging spectacles with a power of �0:5 dioptres.


Problem 11.5
Figure 11.18 shows a magnifying glass of power P with an erect and virtual image at l 0. The angular


magnification


M� ¼ �=�


¼ angular size of image seen through the glass at distance l 0


angular size of object seen by the unaided eye at do
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where do is the distance of distinct vision. Show that the transverse magnification M T ¼ l 0=l where l


is the actual distance (not do) at which the object O is held. Hence show that M� ¼ do=l and use the


thin lens power equation, p. 318, to show that


M� ¼ doðP þ 1=l 0Þ ¼ Pdo þ 1


when l 0 ¼ d o. Note that M� reduces to the value Pdo when the eye relaxes by viewing the image at 1.


l


l


y
γ β0


d0 = l ′


y ′


Lens power P


Eye


Figure 11.18


Problem 11.6
A telescope resolves details of a distant object by accepting plane wavefronts from individual points


on the object and amplifying the very small angles which separate them. In Figure 11.19, � is the


angle between two such wavefronts one of which propagates along the optical axis. In normal


adjustment the astronomical telescope has both object and image at 1 so that the total power of the


system is zero. Use equation (11.14) to show that the separation of the lenses must be f o þ f e where


f o and f e are respectively the focal lengths of the object and eye lenses.
If 2y is the width of the wavefront at the objective and 2y 0 is the width of the wavefront at the eye


ring show that


M� ¼ � 0


�


����
���� ¼ f o


f e


����
���� ¼ D


d


Eye ring
Eye


Plane
wavefronts Object lens


f0 fe


Eye lens Eye


I
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α α′
α′ y ′
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d
2


Rays from virtual
image at ∞


Figure 11.19
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where D is the effective diameter of the object lens and d is the effective diameter of the eye lens.


Note that the image is inverted.


Problem 11.7
The two lens microscope system of Figure 11.20 has a short focus objective lens of power Po and a


magnifying glass eyepiece of power P e. The image is formed at the near point of the eye (the


distance do of Problems 11.4 and 11.5). Show that the magnification by the object lens is


M o ¼ �Po x 0 where the minus sign shows that the image is inverted. Hence use the expression for


the magnifying glass in Problem 11.5 to show that the total magnification is


M ¼ M oM e ¼ �PoP edo x 0


The length x 0 is called the optical tube length and is standardized for many microscopes at 0.14 m.


Object


f0


fe


d0


I1


I2


f0′
fe′


x ′


Eye


Eye


Figure 11.20
Problem 11.8
Microscope objectives are complex systems of more than one lens but the principle of the oil


immersion objective is illustrated by the following problem. In Figure 11.21 the object O is


embedded a distance R=n from the centre C of a glass sphere of radius


Glass


0 C


P


n


I


Air


Figure 11.21
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R and refractive index n. Any ray OP entering the microscope is refracted at the surface of the sphere


and, when projected back, will always meet the axis CO at the point I. Use Snell’s Law to show that


the distance IC¼ nR.


Problems 11.9, 11.10, 11.11
Using the matrix method or otherwise, find the focal lengths and the location of the principal plane


for the following lens systems (a), (b) and (c). The glass in all lenses has a refractive index of n ¼ 1:5
and all measurements have the same units. Ri is a radius of curvature.


0.3


(a)


R1 = −1 R2 = ∞


R3 = −1


R2 = −0.5


R1 = ∞ R4 = ∞


0.15 0.2 0.15


(b)


R2 = −0.5


R3 = +0.5R1 = ∞ R4 = ∞


0.15 0.150.6


(c)


Summary of Important Results


Power of a Thin Lens


P ¼ ðn � 1Þ 1


R1


� 1


R2


� �
¼ 1


f


where n is the refractive index of the lens material, R1 and R2 are the radii of curvature of


the lens surfaces and f is the focal length.


Power of two thin lenses separated a distance d in Air


P ¼ P1 þP2 � dP1P2


where P1 and P2 are the powers of the thin lenses.
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Power of a thick lens of thickness d and refractive index n


P ¼ P1 þP2 � d=nP1 P2


where P1 and P2 are the powers of the refracting surfaces of the lens.


Optical Helmholtz Equation


For a plane wavefront (source at 1) passing through an optical system the product


ny tan� ¼ constant


where n is the refractive index, y is the width of the wavefront section and � is the angle


between the optical axis and the normal to the wavefront.


For a source at a finite distance, this equation becomes, for paraxial rays,


ny� ¼ constant
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Interference and Diffraction


All waves display the phenomena of interference and diffraction which arise from the


superposition of more than one wave. At each point of observation within the interference


or diffraction pattern the phase difference between any two component waves of the same


frequency will depend on the different paths they have followed and the resulting


amplitude may be greater or less than that of any single component. Although we speak of


separate waves the waves contributing to the interference and diffraction pattern must


ultimately derive from the same single source. This avoids random phase effects from


separate sources and guarantees coherence. However, even a single source has a finite size


and spatial coherence of the light from different parts of the source imposes certain


restrictions if interference effects are to be observed. This is discussed in the section on


spatial coherence on p. 360. The superposition of waves involves the addition of two or


more harmonic components with different phases and the basis of our approach is that laid


down in the vector addition of Figure 1.11. More formally in the case of diffraction we


have shown the equivalence of the Fourier transform method on p. 287 of Chapter 10.


Interference


Interference effects may be classified in two ways:


1. Division of amplitude


2. Division of wavefront


1. Division of amplitude. Here a beam of light or ray is reflected and transmitted at a


boundary between media of different refractive indices. The incident, reflected and


transmitted components form separate waves and follow different optical paths. They


interfere when they are recombined.


2. Division of wavefront. Here the wavefront from a single source passes simultaneously


through two or more apertures each of which contributes a wave at the point of


superposition. Diffraction also occurs at each aperture.
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The difference between interference and diffraction is merely one of scale: in optical


diffraction from a narrow slit (or source) the aperture is of the order of the wavelength of


the diffracted light. According to Huygens Principle every point on the wavefront in the


plane of the slit may be considered as a source of secondary wavelets and the further


development of the diffracted wave system may be obtained by superposing these wavelets.


In the interference pattern arising from two or more such narrow slits each slit may be


seen as the source of a single wave so the number of superposed components in the final


interference pattern equals the number of slits (or sources). This suggests that the complete


pattern for more than one slit will display both interference and diffraction effects and we


shall see that this is indeed the case.


Division of Amplitude


First of all we consider interference effects produced by division of amplitude. In Fig-


ure 12.1 a ray of monochromatic light of wavelength � in air is incident at an angle i on a


plane parallel slab of material thickness t and refractive index n > 1. It suffers partial


reflection and transmission at the upper surface, some of the transmitted light is reflected at


the lower surface and emerges parallel to the first reflection with a phase difference


determined by the extra optical path it has travelled in the material. These parallel beams


meet and interfere at infinity but they may be brought to focus by a lens. Their optical path


difference is seen to be


nðAB þ BDÞ � AC ¼ 2nAB � AC


¼ 2nt=cos �� 2t tan � sin i


¼ 2nt


cos �
ð1 � sin2�Þ ¼ 2nt cos �


(because sin i ¼ n sin �Þ:


S


C


t constant


DA


B


q


q
n > 1


Figure 12.1 Fringes of constant inclination. Interference fringes formed at infinity by division of
amplitude when the material thickness t is constant. The mth order bright fringe is a circle centred at
S and occurs for the constant � value in 2nt cos � ¼ ðm þ 1


2Þ�
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This path difference introduces a phase difference


� ¼ 2�


�
2nt cos �


but an additional phase change of � rad occurs at the upper surface.


The phase difference � between the two interfering beams is achieved by writing the


beam amplitudes as


y1 ¼ aðsin!t þ �=2Þ and y2 ¼ a sin ð!t � �=2Þ


with a resultant amplitude


R ¼ a½sin ð!t þ �=2Þ þ sin ð!t � �=2Þ
¼ 2a sin!t cos �=2


and an intensity


I ¼ R2 ¼ 4a2 sin2 !t cos2 �=2


Figure 12.2 shows the familiar cos2 �=2 intensity fringe pattern for the spatial part of I.


Thus, if 2nt cos � ¼ m� (m an integer) the two beams are anti-phase and cancel to give


zero intensity, a minimum of interference. If 2nt cos � ¼ ðm þ 1
2
Þ� the amplitudes will


reinforce to give an interference maximum.


Since t is constant the locus of each interference fringe is determined by a constant value


of � which depends on a constant angle i. This gives a circular fringe centred on S. An


extended source produces a range of constant � values at one viewing position so the


complete pattern is obviously a set of concentric circular fringes centred on S and formed


at infinity. They are fringes of equal inclination and are called Haidinger fringes. They


are observed to high orders of interference, that is values of m, so that t may be relatively


large.


4a 2


m


δ –4π


–2 –1 0 1 2


–4π 0 2π 4π


Figure 12.2 Interference fringes of cos2 intensity produced by the division of amplitude in Figure
12.1. The phase difference � ¼ 2�nt cos �=� and m is the order of interference
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When the thickness t is not constant and the faces of the slab form a wedge, Figure 12.3a


and b the interfering rays are not parallel but meet at points (real or virtual) near the wedge.


The resulting interference fringes are localized near the wedge and are almost parallel to


the thin end of the wedge. When observations are made at or near the normal to the wedge


cos � � 1 and changes slowly in this region so that 2nt cos � � 2nt: The condition for bright


fringes then becomes


2nt ¼ ðm þ 1
2
Þ�


and each fringe locates a particular value of the thickness t of the wedge and this defines


the patterns as fringes of equal thickness. As the value of m increases to m þ 1 the thickness


of the wedge increases by �=2n so the fringes allow measurements to be made to within a


fraction of a wavelength and are of great practical importance.


t varying


t varying


n > 1


n > 1


(a)


(b)


Figure 12.3 Fringes of constant thickness. When the thickness t of the material is not constant the
fringes are localized where the interfering beams meet (a) in a real position and (b) in a virtual
position. These fringes are almost parallel to the line where t ¼ 0 and each fringe defines a locus of
constant t
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The spectral colours of a thin film of oil floating on water are fringes of constant


thickness. Each frequency component of white light produces an interference fringe at that


film thickness appropriate to its own particular wavelength.


In the laboratory the most familiar fringes of constant thickness are Newton’s Rings.


Newton’s Rings


Here the wedge of varying thickness is the air gap between two spherical surfaces of


different curvature. A constant value of t yields a circular fringe and the pattern is one of


concentric fringes alternately dark and bright. The simplest example, Figure 12.4, is a


plano convex lens resting on a plane reflecting surface where the system is illuminated


from above using a partially reflecting glass plate tilted at 45	. Each downward ray is


partially reflected at each surface of the lens and at the plane surface. Interference takes


Incident
light


Interfering
beams


OPTICAL FLAT


L


Focal plane
of L


Semi-silvered
reflector


Figure 12.4 Newton’s rings of interference formed by an air film of varying thickness between the
lens and the optical flat. The fringes are circular, each fringe defining a constant value of the air film
thickness
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place between the light beams reflected at each surface of the air gap. At the lower (air to


glass) surface of the gap there is a � rad phase change upon reflection and the centre of the


interference fringe pattern, at the point of contact, is dark. Moving out from the centre,


successive rings are light and dark as the air gap thickness increases in units of �=2. If R is


the radius of curvature of the spherical face of the lens, the thickness t of the air gap at a


radius r from the centre is given approximately by t � r 2=2R. In the mth order of


interference a bright ring requires


2t ¼ ðm þ 1
2
Þ� ¼ r 2=R


and because t / r 2 the fringes become more crowded with increasing r. Rings may be


observed with very simple equipment and good quality apparatus can produce fringes for


m > 100:


(Problem 12.1)


Michelson’s Spectral Interferometer


This instrument can produce both types of interference fringes, that is, circular fringes of


equal inclination at infinity and localized fringes of equal thickness. At the end of the


nineteenth century it was one of the most important instruments for measuring the structure


of spectral lines.


As shown in Figure 12.5 it consists of two identical plane parallel glass plates G1 and G2


and two highly reflecting plane mirrors M1 and M2. G1 has a partially silvered back face,


G2 does not. In the figure G1 and G2 are parallel and M1 and M2 are perpendicular. Slow,


accurately monitored motion of M1 is allowed in the direction of the arrows but the


mounting of M2 is fixed although the angle of the mirror plane may be tilted so that M1


and M2 are no longer perpendicular.


The incident beam from an extended source divides at the back face of G1. A part of it is


reflected back through G1 to M1 where it is returned through G1 into the eye or detector.


The remainder of the incident beam reaches M2 via G2 and returns through G2 to be


reflected at the back face of G1 into the eye or detector where it interferes with the beam


from the M1 arm of the interferometer. The presence of G2 assures that each of the two


interfering beams has the same optical path in glass. This condition is not essential for


fringes with monochromatic light but it is required with a white light source where


dispersion in glass becomes important.


An observer at the detector looking into G1 will see M1, a reflected image of M2 (M 0
2,


say) and the images S1 and S 0
2 of the source provided by M1 and M2. This may be


represented by the linear configuration of Figure 12.6 which shows how interference takes


place and what type of firnges are produced.


When the optical paths in the interferometer arms are equal and M1 and M2 are


perpendicular the planes of M1 and the image M 0
2 are coincident. However a small optical


path difference t between the arms becomes a difference of 2t between the mirrored images


of the source as shown in Figure 12.6. The divided ray from a single point P on the


extended source is reflected at M1 and M2 (shown as M 0
2) but these reflections appear to
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come from P1 and P 0
2 in the image planes of the mirrors. The path difference between the


rays from P1 and P 0
2 is evidently 2t cos �. When 2t cos � ¼ m� a maximum of interference


occurs and for constant � the interference fringe is a circle. The extended source produces a


range of constant � values and a pattern of concentric circular fringes of constant


inclination.


If the path difference t is very small and the plane of M2 is now tilted, a wedge is formed


and straight localized fringes may be observed at the narrowest part of the wedge. As the


wedge thickens the fringes begin to curve because the path difference becomes more


strongly dependent upon the angle of observation. These curved fringes are always convex


towards the thin end of the wedge.


M1


G1 G2


M2


Allowed
movement
of M1


Source
S


Eye or detector


Figure 12.5 Michelson’s Spectral Interferometer. The beam from source S splits at the back face of
G1, and the two parts are reflected at mirrors M1 and M2 to recombine and interfere at the eye or
detector. G2 is not necessary with monochromatic light but is required to produce fringes when S is a
white light source
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The Structure of Spectral Lines


The discussion on spatial coherence, p. 362, will show that two close identical sources


emitting the same wavelength � produce interference fringe systems slightly displaced


from each other (Figure 12.17).


The same effect is produced by a single source, such as sodium, emitting two


wavelengths, � and ���� so that the maxima and minima of the cos2 fringes for � are


slightly displaced from those for ����. This displacement increases with the order of


interference m until a value of m is reached when the maximum for � coincides with a


minimum for ���� and the fringes disappear as their visibility is reduced to zero.


In 1862, Fizeau, using a sodium source to produce Newton’s Rings, found that the


fringes disappeared at the order m ¼ 490 but returned to maximum visibility at m ¼ 980.


He correctly identified the presence of two components in the spectral line.


The visibility


ðImax � IminÞ=ðImax þ IminÞ


equals zero when


m� ¼ ðm þ 1
2
Þð����Þ


and for � ¼ 0:5893 mm and m ¼ 490 we have �� ¼ 0:0006mm (6 Å), which are the


accepted values for the D lines of the sodium doublet.


Using his spectral interferometer, Michelson extended this work between the years 1890


and 1900, plotting the visibility of various fringe systems and building a mechanical


harmonic analyser into which he fed different component frequencies in an attempt to


M1S S1


P1


~2 t cosq


′M2
′S2


′P2


q


P


t 2t


Figure 12.6 Linear configuration to show fringe formation by a Michelson interferometer. A ray
from point P on the extended source S reflects at M1, and appears to come from P1 in the reflected
plane S1. The ray is reflected from M2 (shown here as M 0


2) and appears to come from P 0
2 in the


reflected plane S 0
2. The path difference at the detector between the interfering beams is effectively


2t cos � where t is the difference between the path lengths from the source S to the separate mirrors
M1 and M2
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reproduce his visibility curves. The sodium doublet with angular frequency components !
and !þ�! produced a visibility curve similar to that of Figures 1.7 and 4.4 and was easy


to interpret. More complicated visibility patterns were not easy to reproduce and the


modern method of Fourier transform spectroscopy reverses the procedure by extracting the


frequency components from the observed pattern.


Michelson did however confirm that the cadmium red line, � ¼ 0:6438 mm was highly


monochromatic. The visibility had still to reach a minimum when the path difference in his


interferometer arms was 0.2 m.


Fabry -- Perot Interferometer


The interference fringes produced by division of amplitude which we have discussed so far


have been observed as reflected light and have been produced by only two interfering


beams. We now consider fringes which are observed in transmission and which require


multiple reflections. They are fringes of constant inclination formed in a pattern of


concentric circles by the Fabry–Perot interferometer. The fringes are particularly narrow


and sharply defined so that a beam consisting of two wavelengths � and ���� forms two


patterns of rings which are easily separated for small ��. This instrument therefore has an


extremely high resolving power. The main component of the interferometer is an etalon


Figure 12.7 which consists of two plane parallel glass plates with identical highly reflecting


inner surfaces S1 and S2 which are separated by a distance d.


Suppose a monochromatic beam of unit amplitude, angular frequency ! and wavelength


(in air) of � strikes the surface S1 as shown. A fraction t of this beam is transmitted in


passing from glass to air. At S2 a further fraction t 0 is transmitted in passing from air to


glass to give an emerging beam of amplitude tt 0 ¼ T . The reflection coefficient at the air–


S1 and air–S2 surfaces is r so each subsequent emerging beam is parallel but has an


amplitude factor r 2 ¼ R with respect to its predecessor. Other reflection and transmission


losses are common to all beams and do not affect the analysis. Each emerging beam has a


phase lag � ¼ 4�d cos �=� with respect to its predecessor and these parallel beams interfere


when they are brought to focus via a lens.


The vector sum of the transmitted interfering amplitudes together with their appropriate


phases may be written


A ¼ T ei!t þ TR e ið!t��Þ þ TR2 e ið!t�2�Þ . . .


¼ T ei!t½1 þ R e�i� þ R2 e�i2� . . .


which is an infinite geometric progression with the sum


A ¼ T ei!t=ð1 � R e�i�Þ


This has a complex conjugate


A� ¼ T e�i!t=ð1 � R ei�Þ
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If the incident unit intensity is I0 the fraction of this intensity in the transmitted beam may


be written


I t


I0


¼ AA�


I0


¼ T 2


ð1 � R e�i�Þð1 � R ei�Þ ¼
T 2


ð1 þ R2 � 2R cos �Þ


or, with


cos � ¼ 1 � 2 sin2 �=2


Glass


S1 S2


Glass


Air


I


t


d


q
q
q
q


t t ′ = T


r 
2


 t t ′ = RT


r 
2t


r t


r 
4


 t t ′ = R 
2T


r 
6


 t t ′ = R 
3T


Figure 12.7 S1 and S2 are the highly reflecting inner surfaces of a Fabry--Perot etalon with a
constant air gap thickness d. Multiple reflections produce parallel interfering beams with amplitudes
T, RT, R2T , etc. each beam having a phase difference


� ¼ 4�d cos �=�


with respect to its neighbour
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as


I t


I0


¼ T 2


ð1 � RÞ2 þ 4R sin2 �=2
¼ T 2


ð1 � RÞ2


1


1 þ ½4R sin2 �=2=ð1 � RÞ2


But the factor T 2=ð1 � RÞ2
is a constant, written C so


I t


I0


¼ C � 1


1 þ ½4R sin2 �=2=ð1 � RÞ2


Writing CI0 ¼ Imax, the graph of I t versus � in Figure 12.8 shows that as the reflection


coefficient of the inner surfaces is increased, the interference fringes become narrow and


more sharply defined. Values of R > 0:9 may be reached using the special techniques of


multilayer dielectric coating. In one of these techniques a glass plate is coated with


alternate layers of high and low refractive index materials so that each boundary presents a


large change of refractive index and hence a large reflection. If the optical thickness of


each layer is �=4 the emerging beams are all in phase and the reflected intensity is high.


Resolving Power of the Fabry -- Perot Interferometer


Figure 12.8 shows that a value of R ¼ 0:9 produces such narrow and sharply defined


fringes that if the incident beam has two components � and ���� the two sets of fringes


should be easily separated. The criterion for separation depends on the shape of the fringes:


R = 0.04 R = 0.04


R = 0.9


R = 0.5


R = 0.9


R = 0.5


I max


I t


> δ


Figure 12.8 Observed intensity of fringes produced by a Fabry--Perot interferometer. Transmitted
intensity I t versus �: R ¼ r 2 where r is the reflection coefficient of the inner surfaces of the etalon.
As R increases the fringes become narrower and more sharply defined
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the diffraction grating of p. 373 uses the Rayleigh criterion, but the fringes here are so


sharp that they are resolved at a much smaller separation than that required by Rayleigh.


Here the fringes of the two wavelengths may be resolved when they cross at half their


maximum intensities; that is, at I t ¼ Imax=2 in Figure 12.9.


Using the expression


I t ¼ Imax �
1


1 þ 4R sin2 �=2


ð1 � RÞ2


we see that I t ¼ Imax when � ¼ 0 and I t ¼ Imax=2 when the factor


4R sin2 �=2=ð1 � RÞ2 ¼ 1


The fringes are so narrow that they are visible only for very small values of � so we may


replace sin �=2 by �=2 in the expression


4R sin2 �=2=ð1 � RÞ2 ¼ 1


∆m


∆m


λ λ – ∆λ


m + ∆m m + 1mOrder
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Figure 12.9 Fabry--Perot interference fringes for two wavelength � and ���� are resolved at
order m when they cross at half their maximum intensity. Moving from order m to m þ 1 changes the
phase � by 2� rad and the full ‘half-value’ width of each maximum is given by �m ¼ 2� 1=2 which is
also the separation between the maxima of � and ���� when the fringes are just resolved
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to give the value


�1=2 ¼ ð1 � RÞ
R1=2


as the phase departure from the maximum, � ¼ 0, which produces the intensity I t ¼ Imax=2


for wavelength �. Our criterion for resolution means, therefore, that the maximum intensity


for ���� is removed an extra amount �1=2 along the phase axis of Figure 12.9. This axis


also shows the order of interference m at which the wavelengths are resolved, together with


the order m þ 1 which represents a phase shift of � ¼ 2� along the phase axis.


In the mth order of interference we have


2d cos � ¼ m�


and for fringes of equal inclination (� constant), logarithmic differentiation gives


�=�� ¼ �m=�m


Now �m ¼ 1 represents a phase change of � ¼ 2� and the phase difference of 2:�1=2


which just resolves the two wavelengths corresponds to a change of order


�m ¼ 2:�1=2=2�


Thus, the resolving power, defined as


�


��
¼ m


�m


��� ��� ¼ m�


�1=2


¼ m�R1=2


ð1 � RÞ


The equivalent expression for the resolving power in the mth order for a diffracting


grating of N lines (interfering beams) is shown on p. 376 to be


�


��
¼ mN


so we may express


N 0 ¼ �R1=2=ð1 � RÞ


as the effective number of interfering beams in the Fabry–Perot interferometer.


This quantity N 0 is called the finesse of the etalon and is a measure of its quality. We see that


N 0 ¼ 2�


2�1=2


¼ 1


�m
¼ separation between orders m and m þ 1


‘half value’ width of mth order


Thus, using one wavelength only, the ratio of the separation between successive fringes to


the narrowness of each fringe measures the quality of the etalon. A typical value of N 0 � 30.


Free Spectral Range


There is a limit to the wavelength difference �� which can be resolved with the Fabry–


Perot interferometer. This limit is reached when �� is such that the circular fringe for � in
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the mth order coincides with that for ���� in the m þ 1th order. The pattern then loses its


unique definition and this value of �� is called the free spectral range.


From the preceding section we have the expression


�


��
¼ � m


�m


and in the limit when �� represents the free spectral range then


�m ¼ 1


and


�� ¼ ��=m


But m� ¼ 2d when � ’ 0 so the free spectral range


�� ¼ ��2=2d


Typically d � 10�2 m and for � (cadmium red) ¼ 0:6438 microns we have, from 2d ¼ m�,


a value of


m � 3 � 104


Now the resolving power


�


��
¼ mN 0


so, for


N 0 � 30


the resolving power can be as high as 1 part in 106.


Central Spot Scanning


Early interferometers recorded flux densities on photographic plates but the non-linear


response of such a technique made accurate resolution between two wavelengths tedious


and more difficult. This method has now been superseded by the use of photoelectronic


detectors which have the advantage of a superior and more reliable linearity. Moreover, the


response of such a device with controlled vibration of one mirror of the etalon allows the


variation of the intensity across the free spectral range to be monitored continuously.


The vibration of the mirror, originally electro-mechanical, is now most often produced


by using a piezoelectric material on which to mount one of the etalon mirrors. When a


voltage is applied to such a material it changes its length and the distance d between the


etalon mirrors can be varied. The voltage across the piezoelectric mount is tailored to


produce the desired motion.


Changing d by �=2 is equivalent to changing �m by 1, which corresponds to a scan of


the free spectral range, ��, when �=�� ¼ jm=�mj (Figure 12.9).
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One of the most common experimental arrangements is that of central spot scanning


(Figure 12.10). Where the earlier photographic technique recorded the flux density over a


wide region for a short period, central spot scanning focuses on a single point in space for a


long period over many cycles of the etalon vibration. Matching the time base of the


oscilloscope to the vibration period of the etalon produces a stationary trace on the screen


which can be measured directly in addition to being filmed for record purposes.


The Laser Cavity


The laser cavity is in effect an extended Fabry–Perot etalon. Mirrors coated with multi-


dielectric films described in the next section can produce reflection coefficients R � 0:99


and the amplified stimulated emission in the laser produces a beam which is continuously


reflected between the mirror ends of the cavity. The high value of R allows the amplitudes


of the beam in opposing directions to be taken as equal, so a standing wave system is


generated (Figure 12.11) to form a longitudinal mode in the cavity.


The superposed amplitudes after a return journey from one mirror to the other and back


are written for a wave number k and a frequency ! ¼ 2�	 as


E ¼ A1ðeið!t�kxÞ � eið!tþkxÞÞ
¼ A1ðe�ikx � eikxÞ ei!t ¼ �2iA1 sin kx ei!t


of which the real part is E ¼ 2A1 sin kx sin!t.


E = Etalon
S = Source
Sc = Screen


P = Pinhole
D = Detector


P
D


Sc


E


P
S


Sc


Figure 12.10 Fabry--Perot etalon central spot scanning. The distance between the etalon mirrors
changes when one mirror vibrates on its piezoelectric mount. The free spectral range is scanned
over many vibration cycles at a central spot and a stationary trace is obtained on the oscilloscope
screen
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If the cavity length is L, one round trip between the mirrors creates a phase change of



 ¼ �2Lk þ 2� ¼ � 4�L


c
	 þ 2�


where � is the phase change on reflection at each mirror.


For this standing wave mode to be maintained, the phase change must be a multiple of


2�, so for m an integer



 ¼ m2� ¼ 4�L


c
	 � 2�


or


	 ¼ mc


2L
þ �c


2�L


When m changes to m þ 1, the phase change of 2� corresponds to an extra wavelength �
for the return journey; that is, an extra �=2 in the standing wave mode. A series of


longitudinal modes can therefore exist with frequency intervals �	 ¼ c=2L determined by


a unit change in m.


The intensity profile for each mode and the separation �	 is best seen by reference to


Figure 12.9, where 
 � � is given by the unit change in the order of interference from m to


m þ 1.


The intensity profile for each cavity mode is that of Figure 12.9, where the full width at


half maximum intensity is given by the phase change


2�1=2 ¼ 2ð1 � RÞ
R1=2


where R is the reflection coefficient. This corresponds to a full width intensity change over


a frequency d	 generated by the phase change


d
 ¼ 4�L


c
d	 in the expression for 
 above


M = Highly reflecting mirror


M M


Figure 12.11 A longitudinal mode in a laser cavity which behaves as an extended Fabry--Perot
etalon with highly reflecting mirrors at each end. The standing wave system acquires an extra �=2 for
unit change in the mode number m. A typical output is shown in Figure 12.12
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The width at half maximum intensity for each longitudinal mode is therefore given by


4�L


c
d	 ¼ 2ð1 � RÞ


R1=2


or


d	 ¼ ð1 � RÞc
R1=22�L


For a laser 1 m long with R ¼ 0:99, the longitudinal modes are separated by frequency


intervals


�	 ¼ c


2L
¼ 1:5 � 108 Hz


Each mode intensity profile has a full width at half maximum of


d	 ¼ 10�2 c


2�
� 4:5 � 105 Hz


For a He–Ne laser the mean frequency of the output at 632.8 nm is 4:74 � 1014 Hz. The


pattern for �	 and d	 is shown in Figure 12.12, where the intensities are reduced under the


dotted envelope as the frequency difference from the mean is increased.


The finesse of the laser cavity is given by


�	


d	
¼ 1:5 � 108


4:5 � 105
� 300


for the example quoted.


In
te


ns
ity


Mean frequency


>
dν
<


∆ν ν< >


Figure 12.12 Output of a laser cavity. A series of longitudinal modes separated by frequency
intervals �	 ¼ c=2L, where c is the velocity of light and L is the cavity length. The modes are
centred about the mean output frequency and are modulated under the dotted envelope. For a He--Ne
laser 1 m long the separation �	 between the modes � 300 full widths of a mode intensity profile at
half its maximum value
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The intensity of each longitudinal mode is of course, amplified by each passage of the


stimulated emission. Radiation allowed from out of one end represents the laser output but


the amplification process is dominant and the laser produces a continuous beam.


Multilayer Dielectric Films


We have just seen that in the mth order of interference the resolving power of a Fabry–


Perot interferometer is given by


�=�� � mN 0


where the finesse or number of interfering beams


N 0 ¼ �R1=2=ð1 � RÞ ¼ �r=ð1 � r 2Þ


and r is the reflection coefficient of the inner surfaces of the etalon.


It is evident that as r ! 1 the values of N 0 and the resolving power become much larger.


The value of r can be increased to more than 99% by using a metallic coating on the inner


surfaces of the etalon or by depositing on them a multilayer of dielectric films with


alternating high and low refractive indices. For a given monochromatic electromagnetic


wave each layer or film has an optical thickness of �=4.


The reflection coefficient r for such a wave incident on the surface of a higher refractive


index film is increased because the externally and internally reflected waves are in phase; a


phase change of � occurs only on the outer surface and is reinforced by the � phase change


of the wave reflected at the inner surface which travels an extra �=2 optical distance.


High values of r result from films of alternating high and low values of the refractive


index because reflections from successive boundaries are in phase on return to the front


surface of the first film. Those retarded an odd multiple of � by the extra optical path length


per film also have a � phase change on reflection to make a total of 2� rad.


We consider the simplest case of a monochromatic electromagnetic wave in a medium of


refractive index n1, normally incident on a single film of refractive index n 0
1, and thickness


d 0
1. This film is deposited on the surface of a material of refractive index n 0


2, which is called


a substrate (Figure 12.13). The phase lag for a single journey across the film is written �.
The boundary conditions are that the components of the E and H fields parallel to a


surface are continuous across that surface. We write these field amplitudes as Ef and


Hf ¼ nEf for the forward-going wave to the right in Figure 12.13 and Er and Hr ¼ nEr for


the reflected wave going to the left.


We see that at surface 1 the boundary conditions for the electric field E are


Ef 1 þ Er1 ¼ E 0
f 1 þ E 0


r1 ð12:1aÞ
and for the magnetic field


n1Ef 1 � n1Er1 ¼ n 0
1E 0


f 1 � n 0
1E 0


r1 ð12:1bÞ


where the negative sign for the reflected amplitude arises when the E � H direction of the


wave is reversed (see Figure 8.7).
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At surface 2 in Figure 12.13, E 0
f 1 arrives with a phase lag of � with respect to E 0


f 1 at


surface 1 but the E 0
r1 wave at surface 2 has a phase � in advance of E 0


r1 at surface 1, so we


have the boundary conditions


E 0
f 1 e�i� þ E 0


r1 e i� ¼ E 0
f 2 ð12:1cÞ


and


n 0
1E 0


f 1 e�i� � n 0
1E 0


r1 e i� ¼ n 0
2E 0


f 2 ð12:1dÞ


We can eliminate E 0
f 1 and E 0


r1 from equations (12.1a)–(12.1d) to give


1 þ Er1


Ef 1


¼ cos � þ i
n 0


2


n 0
1


sin �


� �
E 0


f 2


Ef 1


ð12:2Þ


and


n1 � n1


Er1


Ef 1


¼ ðin 0
1 sin � þ n 0


2 cos �Þ
E 0


f 2


Ef 1


ð12:3Þ


which we can express in matrix form


1


n1


� �
þ 1


�n1


� �
Er1


Ef 1


¼ cos � i sin �=n 0
1


in 0
1 sin � cos �


� �
1


n 0
2


� �
E 0


f 2


Ef 1


E f 1


Film Substrate


E r 1


E ′f 1


d ′1


n ′1n 1 n ′2


E ′f 2


E ′r 1


Figure 12.13 A thin dielectric film is deposited on a substrate base. At each surface an
electromagnetic wave is normally incident, as Efi, in a medium of refractive index n i and is reflected
as E ri. A multilayer stack of such films, each of optical thickness �=4 and of alternating high and low
refractive indices can produce reflection coefficients >99%
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We write this as


1


n1


� �
þ 1


�n1


� �
r ¼ M1


1


n 0
2


� �
t


where r ¼ Er1=Ef 1 is the reflection coefficient at the first surface and t ¼ E 0
f 2=Ef 1 is the


transmitted coefficient into medium n 0
2 (a quantity we shall not evaluate).


The 2�2 matrix


M1 ¼ cos � i sin �=n 0
1


in 0
1 sin � cos �


� �


relates r and t across the first film and is repeated with appropriate values of n0i for each


successive film. The product of these 2 � 2 matrices is itself a 2 � 2 matrix as with the


repetitive process we found in the optical case of p. 325.


Thus, for N films we have


1


n1


� �
þ 1


�n1


� �
R ¼ M1M2M3 � � �MN


1


n 0
Nþ1


� �
T ; ð12:4Þ


where R ¼ Er1=Ef 1 as before and T ¼ E 0
f ðNþ1Þ=Ef 1 the transmitted coefficient


after the final film. Note, however, that Er1 in R is now the result of reflection from all the


film surfaces and that these are in phase.


The typical matrix M3 relates r to t across the third film and the product of the matrices


M1M2M3 � � �MN ¼ M ¼ M11 M12


M21 M22


� �


is a 2�2 matrix.


Eliminating T from the two simultaneous equations (12.4) we have, in terms of the


coefficients of M


R ¼ A � B


A þ B
ð12:5Þ


where


A ¼ n1ðM11 þ M12n 0
Nþ1Þ


and


B ¼ ðM21 þ M22n 0
Nþ1Þ


If we now consider a system of two films, the first of higher refractive index nH and the


second of lower refractive index nL, where each has an optical thickness d ¼ �=4, then the


phase � ¼ �=2 for each film and


M1M2 ¼ 0


inH


i=nH


0


� �
0 i=nL


inL 0


� �
¼ �nL=nH 0


0 �nH=nL


� �
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A stack of N such pairs, 2N films in all with alternating nH and nL, produces


M1M2 � � �M2N ¼ ½M1M2N ¼


�nL


nH


� �N


0


0
�nH


nL


� �N


2
6664


3
7775


giving R the total reflection coefficient from equation (12.5) equal to


R ¼


�nL


nH


� �N


� �nH


nL


� �N


�nL


nH


� �N


þ �nH


nL


� �N


We see that as long as nH 6¼ nL, then as N ! 1, R ! 1 and this value may be used in


our derivation of the expressions for the finesse and resolving power of the Fabry–Perot


interferometer.


Multilayer stacks using zinc sulphate ðnH ¼ 2:3Þ and cryolite ðnL ¼ 1:35Þ have achieved


R values > 99.5%.


Note that all the 2�2 matrices and their products have determinants equal to unity which


states that the column vectors represent a quantity which remains invariant throughout the


matrix transformations.


(Problem 12.2)


The Thin Film Optical Wave Guide


Figure 12.14 shows a thin film of width d and refractive index n along which light of


frequency 	 and wave number k is guided by multiple internal reflections. The extent of the


P


θ θ


θ θ
Q


O


n ′


n d


Figure 12.14 A thin dielectric film or fibre acts as an optical wave guide. The reflection angle �
must satisfy the relation n sin �� n 0, where n 0 is the refractive index of the coating over the film of
refractive index n. Propagating modes have standing wave systems across the film as shown and
constructive interference occurs on the standing wave axis where the amplitude is a maximum.
Destructive interference occurs at the nodes
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wave guide is infinite in the direction normal to the page. The internal reflection angle �
must satisfy


n sin �� n 0


where n 0 is the refractive index of the medium bounding the thin film surfaces. Each


reflected ray is normal to a number of wave fronts of constant phase separated by �, where


k ¼ 2�=� and constructive interference is necessary for any mode to propagate. Reflections


may take place at any pair of points P and O along the film and we examine the condition


for constructive interference by considering the phase difference along the path POQ,


taking into account a phase difference � introduced by reflection at each of P and Q.


Now


PO ¼ cos �=d


and


OQ ¼ PO cos 2�


so with


cos 2� ¼ 2 cos2 �� 1


we have


PO þ OQ ¼ 2d cos �


giving a phase difference


�
 ¼ 
Q � 
P ¼ � 2�	


c
ðn 2d cos �Þ þ 2�


Constructive interference requires


�
 ¼ m 2�


where m is an integer, so we write


m 2� ¼ 2�	


c
n 2d cos �� 2��m


where


�m ¼ 2�=2�


represents the phase change on reflection.


Radiation will therefore propagate only when


cos � ¼ cðm þ�mÞ
	 2nd


for m ¼ 0; 1; 2; 3.
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The condition n sin �� n 0 restricts the values of the frequency 	 which can propagate. If


� ¼ �m for mode m and


cos �m ¼ ð1 � sin2 �mÞ1=2


then


n sin �m � n 0


becomes


cos �m � 1 � n 0


n


� �2
" #1=2


and 	 must satisfy


	� cðm þ�mÞ
2dðn2 � n 02Þ1=2


The mode m ¼ 0 is the mode below which 	 will not propagate, while �m is a constant


for a given wave guide. Each mode, Figure 12.14, is represented by a standing wave system


across the wave guide normal to the direction of propagation. Constructive interference


occurs on the axis of this wave system where the amplitude is a maximum and destructive


interference is indicated by the nodes.


Division of Wavefront


Interference Between Waves from Two Slits or Sources


In Figure 12.15 let S1 and S2 be two equal sources separated by a distance f, each


generating a wave of angular frequency ! and amplitude a. At a point P sufficiently distant


from S1 and S2 only plane wavefronts arrive with displacements


y1 ¼ a sin ð!t � kx1Þ from S1


and


y2 ¼ a sin ð!t � kx2Þ from S2


so that the phase difference between the two signals at P is given by


� ¼ kðx2 � x1Þ ¼
2�


�
ðx2 � x1Þ


This phase difference �, which arises from the path difference x2 � x1, depends only on x1,


x2 and the wavelength � and not on any variation in the source behaviour. This requires that


there shall be no sudden changes of phase in the signal generated at either source – such


sources are called coherent.
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The superposition of displacements at P gives a resultant


R ¼ y1 þ y2 ¼ a½sin ð!t � kx1Þ þ sin ð!t � kx2Þ


Writing X � ðx1 þ x2Þ=2 as the average distance from the two sources to point P we


obtain


kx1 ¼ kX � �=2 and kx2 ¼ kX þ �=2


to give


R ¼ a½sin ð!t � kX þ �=2Þ þ sin ð!t � kX � �=2Þ
¼ 2a sin ð!t � kXÞ cos �=2


and an intensity


I ¼ R2 ¼ 4a2 sin2 ð!t � kXÞ cos2 �=2


S1


X2 – X1 = 0


X 1 X 2


S2
f


(X2 – X1) = Constantδ = 2 p
λ


(X2 – X1)δ = 2 p
λ


 = Constant
P


Figure 12.15 Interference at P between waves from equal sources S1 and S2, separation f, depends
only on the path difference x 2 � x1. Loci of points with constant phase difference � ¼ ð2�=�Þ
ðx 2 � x1Þ are the family of hyperbolas with S1 and S2 as foci
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When


cos
�


2
¼ �1


the spatial intensity is a maximum,


I ¼ 4a2


and the component displacements reinforce each other to give constructive interference.


This occurs when


�


2
¼ �


�
ðx2 � x1Þ ¼ n�


that is, when the path difference


x2 � x1 ¼ n�


When


cos
�


2
¼ 0


the intensity is zero and the components cancel to give destructive interference. This


requires that


�


2
¼ ð2n þ 1Þ�


2
¼ �


�
ðx2 � x1Þ


or, the path difference


x2 � x1 ¼ ðn þ 1
2
Þ�


The loci or sets of points for which x2 � x1 (or �) is constant are shown in Figure 12.15 to


form hyperbolas about the foci S1 and S2 (in three dimensions the loci would be the


hyperbolic surfaces of revolution).


Interference from Two Equal Sources of Separation f


Separation f � �. Young’s Slit Experiment


One of the best known methods for producing optical interference effects is the Young’s slit


experiment. Here the two coherent sources, Figure 12.16, are two identical slits S1 and S2


illuminated by a monochromatic wave system from a single source equidistant from S1 and


S2. The observation point P lies on a screen which is set at a distance l from the plane of


the slits.


The intensity at P is given by


I ¼ R2 ¼ 4a2 cos2 �


2
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and the distances PP0 ¼ z and slit separation f are both very much less than l (experi-


mentally � 10�3 lÞ: This is indicated by the break in the lines x1 and x2 in Figure 12.16


where S1P and S2P may be considered as sufficiently parallel for the path difference to be


written as


x2 � x1 ¼ f sin � ¼ f
z


l


to a very close approximation.


Thus


� ¼ 2�


�
ðx2 � x1Þ ¼


2�


�
f sin � ¼ 2�


�
f


z


l


If


I ¼ 4a2 cos2 �


2


then


I ¼ I0 ¼ 4a2 when cos
�


2
¼ 1


that is, when the path difference


f
z


l
¼ 0; ��; �2�; . . .� n�


to P


to P


to P


P


S1


f


S2


X 1


q


q


X 1


X 2


Z 0 P0


X 2


l


f sin q ≈ f z
l


Z


Figure 12.16 Waves from equal sources S1 and S2 interfere at P with phase difference � ¼ ð2�=�Þ
ðx 2 � x1Þ ¼ ð2�=�Þ f sin � � ð2�=�Þ f ðz=lÞ. The distance l � z and f so S1P and S2P are effectively
parallel. Interference fringes of intensity I ¼ I 0 cos2 �=2 are formed in the plane PP0
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and


I ¼ 0 when cos
�


2
¼ 0


that is, when


f
z


l
¼ ��


2
; � 3�


2
; �ðn þ 1


2
Þ�


Taking the point P0 as z ¼ 0, the variation of intensity with z on the screen P0P will be


that of Figure 12.16, a series of alternating straight bright and dark fringes parallel to the


slit directions, the bright fringes having I ¼ 4a2 whenever z ¼ n�l=f and the dark fringes


I ¼ 0, occurring when z ¼ ðn þ 1
2
Þ�l=f , n being called the order of interference of the


fringes. The zero order n ¼ 0 at the point P0 is the central bright fringe. The distance on the


screen between two bright fringes of orders n and n þ 1 is given by


znþ1 � zn ¼ ½ðn þ 1Þ � n�l


f
¼ �l


f


which is also the physical separation between two consecutive dark fringes. The spacing


between the fringes is therefore constant and independent of n, and a measurement of the


spacing, l and f determines �.


The intensity distribution curve (Figure 12.17) shows that when the two wave trains


arrive at P exactly out of phase they interfere destructively and the resulting intensity or


energy flux is zero. Energy conservation requires that the energy must be redistributed, and


that lost at zero intensity is found in the intensity peaks. The average value of cos2 �=2 is 1
2
,


and the dotted line at I ¼ 2a2 is the average intensity value over the interference system


which is equal to the sum of the separate intensities from each slit.


There are two important points to remember about the intensity interference fringes


when discussing diffraction phenomena; these are


� The intensity varies with cos2 �=2.


� The maxima occur for path differences of zero or integral numbers of the wavelength,


whilst the minima represent path differences of odd numbers of the half-wavelength.


4a 22a 2


δ–5π –3π –π 0 5π3ππ


Figure 12.17 Intensity of interference fringes is proportional to cos2 �=2, where � is the phase
difference between the interfering waves. The energy which is lost in destructive interference
(minima) is redistributed into regions of constructive interference (maxima)
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Spatial Coherence In the preceding section nothing has been said about the size of the


source producing the plane wave which falls on S1 and S2. If this source is an ideal point


source A equidistant from S1 and S2, Figure 12.18, then a single set of cos2 fringes is


produced. But every source has a finite size, given by AB in Figure 12.18, and each point


on the line source AB produces its own set of interference fringes in the plane PP0; the eye


observing the sum of their intensities.


If the solid curve A 0C0 is the intensity distribution for the point A of the source and the


broken curves up to B 0 represent the corresponding fringes for points along AB the


resulting intensity curve is DE. Unless A 0B 0 extends to C the variations of DE will be seen


as faint interference bands. These intensity variations were quantified by Michelson, who


defined the


Visibility ¼ Imax � Imin


Imax þ Imin


A
d


f


B


d >> f


S1


P0


P


A′


B′


C′


C


D


E
S2


gg
cos


2


intensity


R
esultant


intensity


I maxI min


Figure 12.18 The point source A produces the cos2 interference fringes represented by the solid
curve A 0C0. Other points on the line source AB produce cos2 fringes (the displaced broken curves B 0)
and the observed total intensity is the curve DE. When the points on AB extend A 0B 0 to C the fringes
disappear and the field is uniformly illuminated
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The cos2 fringes from a point source obviously have a visibility of unity because the


minimum intensity Imin ¼ 0.


When A 0B 0 of Figure 12.18 ¼ A 0C, the point source fringe separation (or a multiple of


it) the field is uniformly illuminated, fringe visibility ¼ 0 and the fringes disappear.


This occurs when the path difference


AS2 � BS1 � AB sin  ¼ �=2 where AS2 ¼ AS1:


Thus, the requirement for fringes of good visibility imposes a limit on the finite size of the


source. Light from points on the source must be spatially coherent in the sense that


AB sin  � �=2 in Figure 12.18.


But for f � d,


sin  � f=2d


so the coherence condition becomes


sin  ¼ f=2d � �=2AB


or


AB=d � �=f


where AB/d measures the angle subtended by the source at the plane S1S2.


Spatial coherence therefore requires that the angle subtended by the source


� �=f


where f is the linear size of the diffracting system. (Note also that �=f measures �ð� z=lÞ
the angular separation of the fringes in Figure 12.16.)


As an example of spatial coherence we may consider the production of Young’s


interference fringes using the sun as a source.


The sun subtends an angle of 0.018 rad at the earth and if we accept the approximation


AB


d
� �


f
� �


4 f


with � ¼ 0:5 mm ,


we have


f � 0:5


4ð0:018Þ � 14mm


This small value of slit separation is required to meet the spatial coherence condition.


Separation f � �ðk f � 1 where k ¼ 2�=�Þ
If there is a zero phase difference between the signals leaving the sources S1 and S2 of


Figure 12.16 then the intensity at some distant point P may be written


I ¼ 4a2 cos2 �


2
¼ 4I s cos2 k f sin �


2
� 4I s;
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where the path difference S2P � S1P ¼ f sin � and I s ¼ a2 is the intensity from each


source.


We note that, since f � �ðk f � 1Þ, the intensity has a very small � dependence and the


two sources may be effectively replaced by a single source of amplitude 2a.


Dipole Radiation ð f � �Þ
Suppose, however, that the signals leaving the sources S1 and S2 are anti-phase so that their


total phase difference at some distant point P is


� ¼ ð�0 þ k f sin �Þ
where �0 ¼ � is the phase difference introduced at source.


The intensity at P is given by


I ¼ 4 I s cos2 �


2
¼ 4 Is cos2 �


2
þ k f sin �


2


� �


¼ 4 I s sin2 k f sin �


2


� �
� I sðk f sin �Þ2


because


k f � 1


Two anti-phase sources of this kind constitute a dipole whose radiation intensity I � I s


the radiation from a single source, when k f � 1. The efficiency of radiation is seen to


depend on the product kf and, for a fixed separation f the dipole is a less efficient radiator at


low frequencies (small k) than at higher frequencies. Figure 12.19 shows the radiation


intensity I plotted against the polar angle � and we see that for the dipole axis along the


direction � ¼ �=2, completely destructive interference occurs only on the perpendicular


axis � ¼ 0 and � ¼ �. There is no direction (value of �) giving completely constructive


interference. The highest value of the radiated intensity occurs along the axis � ¼ �=2 and


� ¼ 3�=2 but even this is only


I ¼ ðk f Þ2
I s;


where


k f � 1


The directional properties of a radiating dipole are incorporated in the design of


transmitting aerials. In acoustics a loudspeaker may be considered as a multi dipole source,


the face of the loudspeaker generating compression waves whilst its rear propagates


rarefactions. Acoustic reflections from surrounding walls give rise to undesirable


interference effects which are avoided by enclosing the speaker in a cabinet. Bass reflex


or phase inverter cabinets incorporate a vent on the same side as the speaker face at an


acoustic distance of half a wavelength from the rear of the speaker. The vent thus acts as a


second source in phase with the speaker face and radiation is improved.
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(Problems 12.3, 12.4, 12.5)


Interference from Linear Array of N Equal Sources


Figure 12.20 shows a linear array of N equal sources with constant separation f generating


signals which are all in phase ð�0 ¼ 0Þ. At a distant point P in a direction � from the


sources the phase difference between the signals from two successive sources is given by


� ¼ 2�


�
f sin �


and the resultant at P is found by superposing the equal contribution from each source with


the constant phase difference � between successive contributions.


But we found from Figure 1.11 that the resultant of such a superposition was given by


R ¼ a
sin ðN�=2Þ
sin ð�=2Þ


I max = I s (k f )2


I = I s (k f sin q )2


q


f << λ


kf << 1


q = p
2


q = p q = 0


dipole
axis


Figure 12.19 Intensity I versus direction � for interference pattern between waves from two equal
sources, � rad out of phase (dipole) with separation f � �. The dipole axis is along the direction
� ¼ ��=2
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where a is the signal amplitude at each source, so the intensity may be written


I ¼ R2 ¼ a2 sin2 ðN�=2Þ
sin2 ð�=2Þ


¼ I s


sin2 ðN�f sin �=�Þ
sin2 ð�f sin �=�Þ


¼ I s


sin2 N�


sin2 �


where I s is the intensity from each source and � ¼ �f sin �=�.


If we take the case of N ¼ 2, then


I ¼ I s


sin2 2�


sin2 �
¼ 4I s cos2 � ¼ 4I s cos2 �


2


which gives us the Young’s Slit Interference pattern.


We can follow the intensity pattern for N sources by considering the behaviour of the


term sin2 N�=sin2 �.


N f sin q 


sin q 


N f


f


q


q


f


f


f


Figure 12.20 Linear array of N equal sources separation f radiating in a direction � to a distant
point P. The resulting amplitude at P (see Figure 1.11) is given by


R ¼ a½sin Nð�=2Þ=sin ð�=2Þ
where a is the amplitude from each source and


� ¼ ð2�=�Þ f sin �


is the common phase difference between successive sources
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We see that when


� ¼ �


�
sin � ¼ 0 � �� 2�; etc:


i.e. when


f sin � ¼ 0; ��; �2� . . .� n�


constructive interference of the order n takes place, and


sin2 N�


sin2 �
! N 2� 2


� 2
! N 2


giving


I ¼ N 2I s


that is, a very strong intensity at the Principal Maximum condition of


f sin � ¼ n�


We can display the behaviour of the sin2 N�=sin2 � term as follows


Numerator sin2 N� is zero for N� ! 0� . . .N� . . . 2N�


# # #
Denominator sin2 � is zero for � ! 0 . . . � . . . 2�


The coincidence of zeros for both numerator and denominator determine the Principal


Maxima with the factor N 2 in the intensity, i.e. whenever f sin � ¼ n�.


Between these principal maxima are N � 1 points of zero intensity which occur


whenever the numerator sin2 N� ¼ 0 but where sin2 � remains finite.


These occur when


f sin � ¼ �


N
;


2�


N
. . . ðn � 1Þ �


N


The N � 2 subsidiary maxima which occur between the principal maxima have much


lower intensities because none of them contains the factor N 2. Figure 12.21 shows the


intensity curves for N ¼ 2; 4; 8 and N ! 1.


Two scales are given on the horizontal axis. One shows how the maxima occur at the


order of interference n ¼ f sin �=�. The other, using units of sin � as the ordinate displays


two features. It shows that the separation between the principal maxima in units of sin � is


�=f and that the width of half the base of the principal maxima in these units is �=N f (the


same value as the width of the base of subsidiary maxima). As N increases not only does


the principal intensity increase as N 2 but the width of the principal maximum becomes


very small.


As N becomes very large, the interference pattern becomes highly directional, very


sharply defined peaks of high intensity occurring whenever sin � changes by �=f .
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The directional properties of such a linear array are widely used in both transmitting and


receiving aerials and the polar plot for N ¼ 4 (Figure 12.22) displays these features. For N


large, such an array, used as a receiver, forms the basis of a radio telescope where the


receivers (sources) are set at a constant (but adjustable) separation f and tuned to receive a


fixed wavelength. Each receiver takes the form of a parabolic reflector, the axes of which


are kept parallel as the reflectors are oriented in different directions. The angular separation


between the directions of incidence for which the received signal is a maximum is given by


sin � ¼ �=f :


(Problems 12.6, 12.7)


Diffraction


Diffraction is classified as Fraunhofer or Fresnel. In Fraunhofer diffraction the pattern is


formed at such a distance from the diffracting system that the waves generating the pattern


may be considered as plane. A Fresnel diffraction pattern is formed so close to the


diffracting system that the waves generating the pattern still retain their curved


characteristics.


N = 2
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1 2
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–2 –1 0 1 2
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N ∞


λ
f


λ
f
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λ
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f
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Figure 12.21 Intensity of interference patterns from linear arrays of N equal sources of separation
f. The horizontal axis in units of f sin �=� gives the spectral order n of interference. The axis in units
of sin � shows that the separation between principal maxima is given by sin � ¼ �=f and the half-
width of the principal maximum is given by sin � ¼ �=Nf
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Fraunhofer Diffraction


The single narrow slit. Earlier in this chapter it was stated that the difference between


interference and diffraction is merely one of scale and not of physical behaviour.


Suppose we contract the scale of the N equal sources separation f of Figure 12.20 until


the separation between the first and the last source, originally Nf, becomes equal to a


distance d where d is now assumed to be the width of a narrow slit on which falls a


monochromatic wavefront of wavelength � where d � �. Each of the large number N equal


sources may now be considered as the origin of secondary wavelets generated across the


plane of the slit on the basis of Huygens’ Principle to form a system of waves diffracted in


all directions.


When these diffracted waves are focused on a screen as shown in Figure 12.23 the


intensity distribution of the diffracted waves may be found in terms of the aperture of the


slit, the wavelength � and the angle of diffraction �. In Figure 12.23 a plane light wave falls


normally on the slit aperture of width d and the waves diffracted at an angle � are brought


to focus at a point P on the screen PP0. The point P is sufficiently distant from the slit for all


wavefronts reaching it to be plane and we limit our discussion to Fraunhofer Diffraction.


Finding the amplitude of the light at P is the simple problem of superposing all the small


contributions from the N equals sources in the plane of the slit, taking into account the


phase differences which arise from the variation in path length from P to these different


sources. We have already solved this problem several times. In Chapter 10 we took it as an


example of the Fourier transform method but here we reapply the result already used in this


chapter on p. 364, namely that the intensity at P is given by


I ¼ I s


sin2 N�


sin2 �
where N� ¼ �


�
N f sin �


is half the phase difference between the contributions from the first and last sources. But


now N f ¼ d the slit width, and if we replace � by � where � ¼ ð�=�Þ d sin � is now half


Sources


f


q = p
2


λ
2


q = p
6


q = p
6


q = p q = 0


Figure 12.22 Polar plot of the intensity of the interference pattern from a linear array of four
sources with common separation f ¼ �=2. Note that the half-width of the principal maximum is
� ¼ �=6 satisfying the relation sin � ¼ �=Nf and that the separation between principal maxima
satisfies the relation that the change in sin � ¼ �=f
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the phase difference between the contributions from the opposite edges of the slit, the


intensity of the diffracted light at P is given by


I ¼ I s ¼
sin2 ð�=�Þd sin �


sin2 ð�=�NÞd sin �
¼ I s


sin2 �


sin2 ð�=NÞ


For N large


sin2 �


N
! �


N


� �2


and we have


I ¼ N 2I s


sin2 �


�2
¼ I0


sin2 �


�2


(recall that in the Fourier Transform derivation on p. 289,


I0 ¼ d 2h2


4�2


where h was the amplitude from each source).


Plotting I ¼ I0ðsin2 �=�2Þ with � ¼ ð�=�Þd sin � in Figure 12.24 we see that its pattern


is symmetrical about the value


� ¼ � ¼ 0


where I ¼ I0 because sin�=�! 1 as �! 0. The intensity I ¼ 0 whenever sin� ¼ 0 that


is, whenever � is a multiple of � or


� ¼ �


�
d sin � ¼ �� � 2� � 3�; etc:


Source of
monochromatic
light


Condenser
lens


Slit of
width d


Focusing
lens


Plane of
diffraction
pattern


d sin q 


q d
P


P0


Figure 12.23 A monochromatic wave normally incident on a narrow slit of width d is diffracted
through an angle � and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all the secondary waves in the plane of the slit with their appropriate phases. The
extreme phase difference from contributing waves at opposite edges of the slit is 
 ¼
2�d sin �=� ¼ 2�
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giving


d sin � ¼ �� � 2� � 3�; etc:


This condition for diffraction minima is the same as that for interference maxima


between two slits of separation d, and this is important when we consider the problem of


light transmission through more than one slit.


The intensity distribution maxima occur whenever the factor sin2 �=�2 has a maximum;


that is, when


d


d�


sin�


�


� �2


¼ d


d�


sin�


�


� �
¼ 0


or


cos�


�
� sin�


�2
¼ 0


This occurs whenever � ¼ tan�, and Figure 12.25 shows that the roots of this equation


are closely approximated by � ¼ �3�=2;�5�=2, etc. (see problem at end of chapter on


exact values).


Table 12.1 shows the relative intensities of the subsidiary maxima with respect to the


principal maximum I0.


The rapid decrease in intensity as we move from the centre of the pattern explains why


only the first two or three subsidiary maxima are normally visible.


Scale of the Intensity Distribution


The width of the principal maximum is governed by the condition d sin � ¼ ��. A constant


wavelength � means that a decrease in the slit width d will increase the value of sin � and


will widen the principal maximum and the separation between subsidiary maxima. The


narrower the slit the wider the diffraction pattern; that is, in terms of a Fourier transform the


narrower the pulse in x-space the greater the region in k- or wave number space required to


represent it.


λ 2λ


–2π –π 0 2ππ


I 0


I 0


sin2a
a 


2


d sin q 


λ
p d sin q α =


α


Figure 12.24 Diffraction pattern from a single narrow slit of width d has an intensity I ¼
I0 sin2 �=�2 where � ¼ � d sin �=�
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(Problems 12.8, 12.9)


Intensity Distribution for Interference with Diffraction
from N Identical Slits


The extension of the analysis from the example of one slit to that of N equal slits of width d


and common spacing f, Figure 12.26, is very simple.


3π
2


0
0 π


2


tan a


tan a


y


y = a


Figure 12.25 Position of principal and subsidiary maxima of single slit diffraction pattern is given
by the intersections of y ¼ � and y ¼ tan�


Table 12.1


�
sin2 �


� 2


I0 sin2 �


� 2


0 1 I0


3�


2


4


9�2


I0


22:2


5�


2


4


25� 2


I0


61:7


7�


2


4


49� 2


I0


121
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To obtain the expression for the intensity at a point P of diffracted light from a single


slit we considered the contributions from the multiple equal sources across the plane of the


slit.


We obtained the result


I ¼ I0


sin2 �


�2


by contracting the original linear array of N sources of spacing f on p. 364. If we expand the


system again to recover the linear array, where each source is now a slit giving us the


diffraction contribution


I s ¼ I0


sin2 �


�2


we need only insert this value at I s in the original expression for the interference intensity,


I ¼ I s


sin2 N�


sin2�
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P
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sin2 sin2Nα
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Figure 12.26 Intensity distribution for diffraction by N equal slits is


I ¼ I0
sin2 �


� 2


sin2 N�


sin2 �


the product of the diffraction intensity for one slit, I 0sin
2 �=�2 and the interference intensity


between N sources sin2 N�=sin2 �, where � ¼ ð�=�Þd sin � and � ¼ ð�=�Þ f sin �
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on p. 364 where


� ¼ �


�
f sin �


to obtain, for the intensity at P in Figure 12.26, the value


I ¼ I0


sin2 �


�2


sin2 N�


sin2�
;


where


� ¼ �


�
d sin �


Note that this expression combines the diffraction term sin2 �=�2 for each slit (source) and


the interference term sin2 N�=sin2 � from N sources (which confirms what we expected


from the opening paragraphs on interference). The diffraction pattern for any number of


slits will always have an envelope


sin2 �


�2
ðsingle slit diffractionÞ


modifying the intensity of the multiple slit (source) interference pattern


sin2 N�


sin2 �


Fraunhofer Diffraction for Two Equal Slits ðN ¼ 2Þ
When N ¼ 2 the factor


sin2 N�


sin2 �
¼ 4 cos2 �


so that the intensity


I ¼ 4I0


sin2 �


�2
cos2 �


the factor 4 arising from N 2 whilst the cos2 � term is familiar from the double source


interference discussion. The intensity distribution for N ¼ 2, f ¼ 2d, is shown in Figure 12.27.


The intensity is zero at the diffraction minima when d sin � ¼ n�. It is also zero at the


interference minima when f sin � ¼ ðn þ 1
2
Þ�.


At some value of � an interference maximum occurs for f sin � ¼ n� at the same position


as a diffraction minimum occurs for d sin � ¼ m�.
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In this case the diffraction minimum suppresses the interference maximum and the order


n of interference is called a missing order.


The value of n depends upon the ratio of the slit spacing to the slit width for


n�


m�
¼ f sin �


d sin �


i.e.


n


m
¼ f


d
¼ �


�


Thus, if


f


d
¼ 2


the missing orders will be n ¼ 2; 4; 6; 8, etc. for m ¼ 1; 2; 3; 4, etc.


The ratio


f


d
¼ �


�


governs the scale of the diffraction pattern since this determines the number of interference


fringes between diffraction minima and the scale of the diffraction envelope is governed by�.


(Problem 12.10)


Transmission Diffraction Grating (N Large)


A large number N of equivalent slits forms a transmission diffraction grating where the


common separation f between successive slits is called the grating space.


missing order


f = 2d


0 1 2 3 4 n


2λλ d sinθ


Figure 12.27 Diffraction pattern for two equal slits, showing interference fringes modified by the
envelope of a single slit diffraction pattern. Whenever diffraction minima coincide with interference
maxima a fringe is suppressed to give a ‘missing order’ of interference
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Again, in the expression for the intensity


I ¼ I0


sin2 �


�2


sin2 N�


sin2�


the pattern lies under the single slit diffraction term (Figure 12.28).


sin2 �


�2


The principal interference maxima occur at


f sin � ¼ n�


having the factor N 2 in their intensity and these are observed as spectral lines of order n.


We see, however, that the intensities of the spectral lines of a given wavelength decrease


with increasing spectral order because of the modifying sin2 �=�2 envelope.


Resolving Power of Diffraction Grating


The importance of the diffraction grating as an optical instrument lies in its ability to


resolve the spectral lines of two wavelengths which are too close to be separated by the


naked eye. If these two wavelengths are � and �þ d� where d�=� is very small the


Resolving Power for any optical instrument is given by the ratio �=d�.


single slit
diffraction envelope


n = spectral order


The intensity of each
spectral line contains
the factor N 


2


n = 0 n = 1 n = 2 n = 3


N - 2 subsidiary maxima


Figure 12.28 Spectral line of a given wavelength produced by a diffraction grating loses
intensity with increasing order n as it is modified by the single slit diffraction envelope. At
the principal maxima each spectral line has an intensity factor N 2 where N is the number of lines in
the grating
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Two such lines are just resolved, according to Rayleigh’s Criterion, when the maximum


of one falls upon the first minimum of the other. If the lines are closer than this their


separate intensities cannot be distinguished.


If we recall that the spectral lines are the principal maxima of the interference pattern


from many slits we may display Rayleigh’s Criterion in Figure 12.29 where the nth order


spectral lines of the two wavelengths are plotted on an axis measured in units of sin �. We


have already seen in Figure 12.21 that the half width of the spectral lines (principal


maxima) measured in such units is given by �=Nf where N is now the number of


grating lines (slits) and f is the grating space. In Figure 12.29 the nth order of wavelength �
occurs when


f sin � ¼ n�


n th order spectral
line for λ + dλ


n th order spectral
line for λ


f (sin   + ∆sin   ) = n (λ + dλ)θ θ


∆(sin  ) = λ /Nfθ


f sin   = n λ θ


 sin   θ


Figure 12.29 Rayleigh’s criterion states that the two wavelengths � and �þ d� are just resolved
in the nth spectral order when the maximum of one line falls upon the first minimum of the other as
shown. This separation, in units of sin �, is given by �=Nf where N is the number of diffraction lines
in the grating and f is the grating space. This leads to the result that the resolving power of the
grating �=d� ¼ nN
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whilst the nth order for �þ d� satisfies the condition


f ½sin �þ�ðsin �Þ ¼ nð�þ d�Þ
so that


f�ðsin �Þ ¼ n d�


Rayleigh’s Criterion requires that the fractional change


�ðsin �Þ ¼ �


Nf


so that


f�ðsin �Þ ¼ n d� ¼ �


N


Hence the Resolving Power of the diffraction grating in the nth order is given by


�


d�
¼ Nn


Note that the Resolving Power increases with the number of grating lines N and the


spectral order n. A limitation is placed on the useful range of n by the decrease of intensity


with increasing n due to the modifying diffraction envelope


sin2 �


�2
ðFig: 12:28Þ


Resolving Power in Terms of the Bandwidth Theorem


A spectral line in the nth order is formed when f sin � ¼ n� where f sin � is the path


difference between light coming from two successive slits in the grating. The extreme path


difference between light coming from opposite ends of the grating of N lines is therefore


given by


Nf sin � ¼ Nn�


and the time difference between signals travelling these extreme paths is


�t ¼ Nn�


c


where c is the velocity of light.


The light frequency 	 ¼ c=� has a resolvable differential change


j�	j ¼ c
j��j
�2


¼ c


Nn�


because ��=� ¼ 1=Nn (from the inverse of the Resolving Power).
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Hence


�	 ¼ c


Nn�
¼ 1


�t


or �	�t ¼ 1 (the Bandwidth Theorem).


Thus, the frequency difference which can be resolved is the inverse of the time difference


between signals following the extreme paths


ð�	�t ¼ 1 is equivalent of course to �!�t ¼ 2�Þ


If we now write the extreme path difference as


Nn� ¼ �x


we have, from the inverse of the Resolving Power, that


��


�
¼ 1


Nn


so


j��j
�2


¼ �
1


�


� �
¼ �k


2�
¼ 1


Nn�
¼ 1


�x


where the wave number k ¼ 2�=�.


Hence we also have


�x�k ¼ 2�


where �k is a measure of the resolvable wavelength difference expressed in terms of the


difference �x between the extreme paths.


On pp. 70 and 71 we discussed the quality factor Q of an oscillatory system. Note that


the resolving power may be considered as the Q of an instrument such as the diffraction


grating or a Fabry–Perot cavity for


�


��
¼ 	


�	


��� ��� ¼ !


�!
¼ Q


(Problems 12.11, 12.12, 12.13, 12.14)


Fraunhofer Diffraction from a Rectangular Aperture


The value of the Fourier transform method of Chapter 10 becomes apparent when we


consider plane wave diffraction from an aperture which is finite in two dimensions.


Although Chapter 10 carried through the transform analysis for the case of only one


variable it is equally applicable to functions of more than one variable.


In two dimensions, the function f ðxÞ becomes the function f ðx; yÞ, giving a transform


Fðkx; kyÞ where the subscripts give the directions with which the wave numbers are


associated.
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In Figure 12.30 a plane wavefront is diffracted as it passes through the rectangular


aperture of dimensions d in the x-direction and b in the y-direction. The vector k, which is


normal to the diffracted wavefront, has direction cosines l and m with respect to the x- and


y-axes respectively. This wavefront is brought to a focus at point P, and the amplitude at P


is the superposition of the contributions from all points ðx; yÞ in the aperture with their


appropriate phases.


A typical point ðx; yÞ in the aperture may be denoted by the vector r; the difference in


phase between the contribution from this point and the central point O of the aperture is, of


course, ð2�=�Þ (path difference). But the path difference is merely the projection of the


vector r upon the vector k, and the phase difference is k � r ¼ ð2�=�Þðlx þ myÞ, where


lx þ my is the projection of r on k.


If we write


2�l


�
¼ kx and


2�m


�
¼ ky


we have the Fourier transform in two dimensions


Fðkx; kyÞ ¼
1


ð2�Þ2


ð1
�1


ð1
�1


f ðx; yÞ e�iðk xxþk yyÞ dx dy


where f ðx; yÞ is the amplitude of the small contributions from the points in the aperture.


Taking f ðx; yÞ equal to a constant a, we have Fðkx; kyÞ the amplitude in k-space at P


¼ a


ð2�Þ2


ðþd=2


�d=2


ðþb=2


�b=2


e�ik xx e�ik yy dx dy


¼ a


4�2
bd


sin�
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sin�
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Figure 12.30 Plane waves of monochromatic light incident normally on a rectangular aperture are
diffracted in a direction k. All light in this direction is brought to focus at P in the image plane. The
amplitude at P is the superposition of contributions from all the typical points, x, y in the aperture
plane with their appropriate phase relationships
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where


� ¼ �ld


�
¼ kxd


2


and


� ¼ �mb


�
¼ kyb


2


Physically the integration with respect to y evaluates the contribution of a strip of the


aperture along the y direction, and integrating with respect to x then adds the contributions


of all these strips with their appropriate phase relationships.


The intensity distribution of the rectangular aperture is given by


I ¼ I0


sin2 �


�2


sin2 �


� 2


and relative intensities of the subsidiary maxima depend upon the product of the two


diffraction terms sin2 �=�2 and sin2 �=� 2.


These relative values will therefore be numerically equal to the product of any two terms


of the series


4


9�2
;


4


25�2
;


4


49�2
; etc:


The diffraction pattern from such an aperture together with a plan showing the relative


intensities is given in Figure 12.31.


Fraunhofer Diffraction from a Circular Aperture


Diffraction through a circular aperture presents another two-dimensional problem to which


the Fourier transform technique may be applied.


As in the case of the rectangular aperture, the diffracted plane wave propagates in a


direction k with direction cosines l and m with respect to the x- and y-axes (Figure 12.32a).


The circular aperture has a radius r0 and any point in it is specified by polar coordinates


ðr; �Þ where x ¼ r cos � and y ¼ r sin �. This plane wavefront in direction k is focused at a


point P in the plane of the diffraction pattern and the amplitude at P is the superposition of


the contributions from all points ðr; �Þ in the aperture with their appropriate phase


relationships. The phase difference between the contribution from a point defined ðx; yÞ and


that from the central point of the aperture is


2�


�
(path difference) ¼ 2�


�
ðlx þ myÞ ¼ kxx þ kyy ð12:6Þ


as with the rectangular aperture, so that the Fourier transform becomes


FðkxkyÞ ¼
1


ð2�Þ2


ð1
�1


ð1
�1


f ðx; yÞ e�iðk yxþk yyÞ dx dy ð12:7Þ
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If we use polar coordinates, f ðx; yÞ becomes f ðr; �Þ and dx dy becomes r dr d�, where the


limits of � are from 0 to 2�. Moreover, because of the circular symmetry we may simplify


the problem. The amplitude or intensity distribution along any radius of the diffraction


pattern is sufficient to define the whole of the pattern, and we may choose this single radial


direction conveniently by restricting k to lie wholly in the xz plane (Figure 12.32b) so that


m ¼ ky ¼ 0 and the phase difference is simply


2�


�
lx ¼ kxx ¼ kxr cos �


Assuming that f ðr; �Þ is a constant amplitude a at all points in the circular aperture, the


transform becomes


FðkxÞ ¼
a


2�


ð 2�


0


d�


ð r0


0


e�ik xr cos �r dr ð12:8Þ


This can be integrated by parts with respect to r and then term by term in a power series


for cos �, but the result is well known and conveniently expressed in terms of a Bessel


function as


FðkxÞ ¼
ar0


kx


J1ðkxr0Þ


where J1ðkxr0Þ is called a Bessel function of the first order.
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Figure 12.31 The distribution of intensity in the diffraction pattern from a rectangular aperture is
seen as the product of two single-slit diffraction patterns, a wide diffraction pattern from the narrow
dimension of the slit and a narrow diffraction pattern from the wide dimension of the slit. This
‘rotates’ the diffraction pattern through 90	 with respect to the aperture
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Bessel functions are series expansions which are analogous to sine and cosine functions.


Where sines and cosines are those functions which satisfy rectangular boundary conditions


defined in Cartesian coordinates, Bessel functions satisfy circular or cylindrical boundary


conditions requiring polar coordinates.


Standing waves on a circular membrane, e.g. a drum, would require definition in terms of


Bessel functions.


The Bessel function of order n is written


JnðxÞ ¼
xn


2nn!
1 � x2


2 � 2n þ 2
þ x4


2 � 4 � 2n þ 2 � 2n þ 4
. . .


� �


so that


J1ðxÞ ¼
x


2
� x3


224
þ x5


22426
� x7


2242628


The expression a2r 2
0 ½J1ðkxr0Þ=kxr02


, which measures the intensity along any radius of the


diffraction pattern due to a circular aperture is normalized and plotted in Figure 12.33.
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Figure 12.32 (a) A plane monochromatic wave diffracted in a direction k from a circular aperture is
focused at a point P in the image plane. Contributions from all points x, y in the aperture superpose
at P with appropriate phase relationships. (b) The direction k of (a) is chosen to lie wholly in the xz-
plane to simplify the analysis. No generality is lost because of circular symmetry. The variation of the
amplitude of diffracted light along any one radius determines the complete pattern
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J1ðkxr0Þ has an infinite number of zeros, and the diffraction pattern is formed by an


infinite number of light and dark concentric rings. The first dark band will occur at the first


zero of J1ðkxr0Þ which is given by kxr0 ¼ 1:219�.


However,


kxr0 ¼ 2�


�
lr0 ¼ 2�


�
r0 sin � 0z


where � 0z is the angle between the vector k and the z-axis and defines the angle of


diffraction. The first minimum therefore occurs at r0 sin � 0z ¼ 0:61� and the next minimum


at r0 sin � 0z ¼ 1:16�.


If the aperture were square with a side length 2r0 (the diameter of the circle) the first dark


fringe would be at r0 sin � 0z ¼ 0:5� and the second at r0 sin � 0z ¼ �.


As the radius of the circular aperture is reduced the value of � 0z for the first minimum


is increased and the whole pattern expands. This reminds us that a reduction of the pulse in


x-space requires an increase in wave number or k-space to represent it.


We may write equation (12.8) as


FðkxÞ ¼
a


2�


ð ro


0


ð 2�


0


e�ik x�r cos �r drd�


where
Ð 2�


0
e�ik x�r cos �d� ¼ 2�J0ðkxrÞ and J0 is the Bessel function of order zero.


Then


FðkxÞ ¼ a


ðr0


0


J0ðkxrÞrdr
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Figure 12.33 Intensity of the diffraction pattern from a circular aperture of radius r0 versus r0, the
radius of the pattern. The intensity is proportional to ½J1ðkxr0Þ=kxr02, where J 1 is Bessel’s function
of order 1. The pattern consists of a central circular principal maximum surrounded by a series of
concentric rings of minima and subsidiary maxima of rapidly diminishing intensity
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Now J1ðkxrÞ and J0ðkxrÞrdr are related by


ðkxr0


0


J0ðkxrÞkxrdðkxrÞ ¼ kxr0J1ðkxr0Þ


giving


FðkxÞ ¼ a�r2
0


2J1ðkxr0Þ
kxr0


� �


where r0 is the radius of the aperture.


The Intensity


I ¼ I0


J1ðkxr0Þ
kxr0


� �2


with the curve shown in Figure 12.33.


Fraunhofer Far Field Diffraction


If we remove the focusing lens in Figure 12.32 and leave the aperture open or place the


lens within it we have the conditions for far field diffraction, Figure 12.34, where R0
0 the


distance from ~OO to P0 is � distances in the aperture and image planes from the optic axis.


The aperture is uniformly illuminated by a distant monochromatic source and a small area


d~ss ¼ d~xxd~yy in the aperture is � �2, where � is the wavelength.


θz′
R0


r0


R′


~ ~ ~


~


~


~
P (x, y)


ds


o


P′(x′,y′,z′)


′


Z


Figure 12.34 In Fraunhofer far field diffraction the distance from the aperture to the image point
P0 is � distances in the aperture and image planes from the optic axis. The electric field at P0 is the
integral of the spherical waves from small areas d~ss in the aperture plane and the resulting intensity
pattern is that of Figure 12.33. It is known as the Airy disc
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The electric field at P0 due to the spherical wave from d~ss is


dEP
0 ¼


~EE


R0 ei!t�kR0
d~ss


Where ~EEei!t is the field at d~ss
Now


R02 ¼ z02 þ ðx0 � ~xxÞ2 þ ðy0 � ~yyÞ2


and


R02
0 ¼ z02 þ x02 þ y02


which combine to give


R0 ¼ R0
0½1 þ ð~xx2 þ ~yy2Þ=R02


0 � 2ðx0~xx þ y0~yyÞ=R02
0 


1=2


and R02
0 � ð~xx2 þ ~yy2Þ


so we write


R0 ¼ R0
0½1 � 2ðx0~xx þ y0~yyÞ=R02


0 
1=2


and if we neglect higher terms


R0 ¼ R0
0½1 � ðx0~xx þ y0~yyÞ=R02


0 


¼ R0
0 �


x0~xx


R0
0


� y0~yy


R0
0


We use this value for R0 in the expression for dEp0 to give the total field at P0 as


EP0 ¼
~EEei!t�kR0


0


R0
0


ð ð
aperture


e
ik


ðx0~xxþy0~yyÞ
R0


0 d~ss


Comparison with equation (12.6) shows that k~xx=R0
0 ¼ kl and k~yy=R0


0 ¼ km of that


equation and proceeding via polar co-ordinates we obtain the same value for the intensity


of the diffraction pattern,


i.e.


I ¼ I0


J1ðkr0sin �02Þ
kr0sin �


0
2


� �2


in Figure 12:33


This far field diffraction pattern is known as the Airy disc, Figure 12.35, and its size places


a limit on the resolving power of a telescope. When the two components of a double star


with an angular separation �
 are viewed through a telescope with an objective lens of


focal length l and diameter d their images will appear as two Airy discs separated by the


angle �
. The two diffraction patterns will be resolved if �
 is much wider than the
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angluar width of a disc but not if it is much less. Lord Rayleigh’s criterion (Figure 12.29)


gives the critical angle �
 for resolution as that when the maximum of one disc falls on the


first minimum of the other �, Figure 12.36. Figure 12.33 then gives


�
 ¼ 0:61�


r0


¼ 1:22�


d


ð�
 ¼ �0
z in Figure 12:33Þ


where � is the rediated wavelength.


Figure 12.35 Photograph of an Airy disc showing the central bright disc, the first dark ring and the
first subsidiary maximum. Compare this with Figure 12.33


∆ φ


∆ φ


Figure 12.36 Two stars with angular separation �
 form separate Airy disc images when viewed
through a telescope. Rayleigh’s criterion (Figure 12.29) states that the these images are resolved
when the central maximum of one falls upon the first minimum of the other
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This condition is known as diffraction-limited resolution. A poor quality lens will


introduce aberrations and will not meet this criterion.


The Michelson Stellar Interferometer


In the discussion on Spatial Coherence (p. 360) we saw that the relative displacement of the


interference fringes from separate sources 1 and 2 led to a partial loss of the visibility of the


fringes defined as


V ¼ Imax � Imin


Imax þ Imin


and eventually when the displacement was equal to half a fringe width V ¼ 0 and there was


a complete loss of contrast.


Michelson’s Stellar Interferomenter (1920) used this to measure the angular separation


between the two components of a double star or, alternatively, the angular width of a


single star.


Initially, we take the simplest case to illustrate the principle and then discuss the


practical problems which arise. We assume in the first instance that light from the stars is


monochromatic with a wavelenght �0. Michelson used four mirros M1 M2 M3 M4 mounted


on a girder with two slits S1 and S2 in front of the lens of an astronomical telescope, Fig-


ure 12.37. The slits were perpendicular to the line joining the two stars. The separation h of


the outer pair of mirrors (�meters) was increased until the fringes observed in the focal


plane of the objective just disappeared. Assuming zero path difference between M1M2 P0


and M4 M3 P0 the light from star A will form its zero order fringe maximum at P0 and its


first order fringe maximum at P1, due to a path difference S2N ¼ d sin � ¼ �0 so the fringe


spacing is determined by d, the separation between the inner mirrors M2 and M3.


The condition for fringe disappearance is that rays from star B will form a first order


maximum fringe midway between P0 and P1, that is, when


CM1M2S1P0 � M4M3S2P0 ¼ CM1 ¼ h sin
 ¼ �0=2


The condition for fringe disappearnce is therefore determined by h while the angular size


of the fringes depends on d so there is an effective magnification of h=d over a fringe


system produced by the slits alone.


The angles � and 
 are small and the minimum value of h is found which produces


V ¼ 0 so that the fringes disappear at


h
 ¼ �0=2 or h ¼ �


2



Measurement of h thus determines the double-star angular separation.


Several assumptions have been made in this simple case presentation. First, that the


intensities of the light radiated by the stars are equal and that they are coherent soruces. In
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fact, even if the sources are incoherent their radiation is essentially coherent at the


interferometer. Second, the radiation is not monochromatic and only a few fringes around


the zero order were visible so �0 must be taken as a mean wavelength. Finally, the


introduction of a lens into the system inevitably creates Airy discs and the visibility must


be expressed in terms of the Airy disc intensity distribution. This results in


V ¼ 2
J1ðuÞ


u


� �


where


u ¼ �h
=�0


B


B
C


A


A


h
P1


M2 S1


S2M3


M4


M1


P0


h sin f


d


N


d sin


θ


θ


f


f


Figure 12.37 In the Michelson stellar interferometer light from stars A and B strike the movable
outer mirrors M1 and M4 to be reflected via fixed mirrors M2 and M3 through two slits S1 and S2 and a
lens to form interference fringes. Light from Star A forms its zero order fringe at P0 and its first order
fringe at P1 when S2N ¼ d sin � ¼ �0. The minimum separation h of M1M4 is found for light from B to
reduce the fringe visibility to zero, that is, when the path difference h ¼ sin
 ¼ �0=2. The angles
are so small that � and 
 replace their sines. Note that the fringe separation depends on d, but the
fringe visibility is governed by h
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If this visibility is plotted against h
=�0 its first zero occurs at 1.22 so the fringes disappear


when h ¼ 1:22�0=
.


In fact, Michelson first used his interferometer in 1920 to measure the angular diameter


of the star Betelgeuse the colour of which is orange. His astronomical telescope was the


2.54 m (100 in.) telescope of the Mt. Wilson Observatory. A mean wavelength


�0 ¼ 570 � 10�9m was used and the fringes vanished when h ¼ 3:07 m to give an angular


diameter 
 ¼ 22:6 � 10�8 radians or 0.047 arc seconds. The distance of Betelgeuse from


the Earth was known and its diameter was calculated to be about 384 � 106km, roughly


280 times that of the Sun. This magnitude is greater than that of the orbital diameter of


Mars around the Sun.


The Convolution Array Theorem


This is a very useful application of the Convolution Theorem p. 297 5th edn, when one of


the members is the sum of a series of d functions.


e.g.


gðxÞ ¼ f1ðxÞ �
X


m


�ðx � xmÞ


¼
ð1
�1


f1ðx0Þ
X


m


�ðx � x0 � xmÞdx0


¼
X


m


f1ðx � xmÞ


This is a linear addition of functions each of the form f1ðxÞ but shifted to new origins at


xmðm ¼ 1; 2; 3 . . .Þ, Figure 12.38.


The convolution theorem gives the Fourier Transform of gðxÞ as


F½ gðxÞ ¼ F½ f1ðxÞF
X


m


�ðx � xmÞ
" #


i.e.


FðkxÞ ¼ F1½ f1ðxÞ
X


m


e�ikxxm


so the transform of the spatially shifted local function is just the product of the transform of


the local function and a phase factor.


This is the Array Theorem which we now apply in a more rigorous approach to the effect


of diffraction on the interference fringes in Young’s slit experiment (p. 358) where the


illuminating source is equidistant from both slits.


The Array Theorem may be applied to any combination of identical apertures but


Young’s experiment involves only the two rectangular (slits) pulses in Figure 12.39a. Here,


f1ðxÞ is a rectangular pulse of width d and the xm values above are xm ¼ � a=2.
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Thus, we have the transform amplitude


FðkxÞ ¼ F1ðkxÞ
X


m


e�ikxxm


where kx ¼ k � x ¼ kx sin � and k in Figure 13.39b is the vector direction from x ¼ �a=2 to


a point P on the diffraction-interference pattern. p. 288 gives


F1ðkxÞ /
sin�


�


where


� ¼ �


�
d sin �


The second term, a phase factor, is


X
m


e�ikxxm ¼ ½eikxa=2 þ e�ikxa=2 ¼ 2 cos kxa=2


x


x


x


f1


f1 f2


∞ ∞ ∞


x1


x1 x2 x3


x2 x3


f2 


×


Figure 12.38 In the convolution array theorem a function f1ðxÞ is convolved with a series of Dirac
functions which shift it to new origins
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We may equate kxa=2 with �=2 on p. 358 where � ¼ 2�
� ðx2 � x1Þ is the phase difference at


point P due to the path difference from the two sources. Here, kxa=2 ¼ ka sin �=2 ¼
�a sin �=� (Figure 13.39b). When coskxa=2 ¼ 1 for maximum constructive interference


ka sin �=2 ¼ �


�
a sin � ¼ n�


i.e.


a sin � ¼ n�


The amplitude squared or intensity is, therefore


I / sin2�


�2
4 cos2ð�=2Þ


a cos2 interference system modulated by a diffraction envelope as shown in Figure 12.27
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Figure 12.39 Young’s double slit experiment represented in convolution array theorem (a) by two
reactangular pulses and (b) with a path difference in the direction k of d sin
 where a is the
separation between the pulse centres
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This method can be extended to produce the pattern for a diffraction grating of N


identical slits.


The Optical Transfer Function


The modern method of testing an optical system, e.g. a lens, is to consider the object


as a series of Fourier frequency components and to find the response of the system to


these frequencies. A test chart with a sinusoidal distribution of intensity would make a


suitable object for this purpose. The function of the lens or optical system is considered to


be that of a linear operator which transforms a sinusoidal input into an undistorted


sinusoidal output.


The linear operator is defined in terms of the Optical Transfer Function (OTF)


which may be real or complex. The real part, the Modulation Transfer Function (MTF),


measures the effect of the lens on the amplitude of the sinusoidal input; the complex


element is the Phase Transfer Function (PTF), a shift in phase when aberrations are present.


If there are no aberrations and the effect on the image is limited to diffraction the PTF is


zero.


Changing the amplitude of the object frequency components affects the contrast between


different parts of the image compared with the corresponding parts of the object. We shall


evaluate this effect at the end of the analysis.


We shall assume that the object is space invariant and incoherent. Space invariance


means that the only effect of moving a point source over the object is to change the location


of the image. When an object is incoherent its intensity or irradiance varies from point to


point and all contributions to the final image are added under the integral sign.


Over a small area dx dy of the object the radiated flux will be I0ðx; yÞdx dy and this makes


its contribution to the image intensity. In addition, every point source on the object creates


a circular diffraction pattern (Airy disc) around the corresponding image point so the


resulting intensity of the image at ðx0; y0Þ will be


d I0ðx0; y0Þ ¼ I0ðx; yÞOðx; y; x0y0Þdx dy


where Oðx; y; x0y0Þ is the radially symmetric intensity distribution of the diffraction pattern


(Airy disc). In this context it is called the Point Spread Function (PSF).


Adding all contributions gives the image intensity


I0ðx0; y0Þ ¼
ð1
�1


ð1
�1


Ioðx; yÞOðx; y; x0y0Þdx dy


If, as we shall assume for simplicity, the magnification is unity, there is a one-to-one


correspondence between the point ðx; yÞ on the object and the centre of its diffraction


pattern in the image plane. Using ðx; yÞ as the coordinate of this centre the value of


Oðx; y; x0; y0Þ at any other point ðx0; y0Þ in the diffraction pattern is given by


Oðx0 � x; y0 � yÞ
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Thus, the intensity or irradiance at any image point may be written


I0ðx0; y0Þ ¼
ð1
�1


ð1
�1


I0ðx; yÞOðx0 � x; y0 � yÞdx dy


This is merely the two-dimensional form of the convolution we met on p. 293 and we


reduce it to one dimension by writing


I0ðx0Þ ¼
ð1
�1


I0ðxÞOðx0 � xÞdx ¼
ð1
�1


I0ðx0 � xÞOðxÞdx


because the convolution theorem of p. 297 allows us to exchange the variables of the


functions under the convolution integral.


This is evidently of the form


I0 ¼ I0 � O


with Fourier Transforms


FðI0Þ ¼ FðI0Þ � FðOÞ


The choice of one dimension which adds clarity to the following analysis tranforms the


PSF to a Line Spread Function (LSF) by cutting a narrow slice from the three-dimensional


PSF. This is achieved by using a line source represented by a Dirac � function, the sifting


property of which isolates an infinitesimally narrow section of the PSF.


The shape of the three-dimensional PSF may be imagined by rotating Figure 12.33 about


its vertical axis for a complete revolution. The profile of a slice along the diameter through


the centre of the PSF is then the intensity of Figure 12.33 together with its reflection about


the vertical axis. Any other slice, not through the centre, will have a similar profile but will


differ in some details, e.g. its minimum values will not be zero, Figure 12.40.


Thus, in one dimension, replacing OðxÞ by LðxÞ the LSF, we have


I0ðx0Þ ¼
ð1
�1


I0ðx0 � xÞ LðxÞdx


or


I0 ¼ I0 � L ¼ L � I0


with


FðI0Þ ¼ FðI0Þ � FðLÞ ¼ FðLÞ � FðI0Þ


Let us write the intensity distribution of an object frequency component in one dimension


as a þ bcoskxx, where b modulates the cosine and a is a positive d.c. bias greater than b so
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that the intensity is always positive. Then, in the convolution above


I0 ¼ a þ bcoskxðx0 � xÞ


and the image intensity at x0 is


I0ðx0Þ ¼
ð1
�1


½a þ bcoskxðx0 � xÞLðxÞ dx


¼
ð1
�1


LðxÞ½a þ bcoskxðx0 � xÞ dx


We remove the x0 terms from the integral by expanding the cosine term to give


I0ðx0Þ ¼ a


ð1
�1


LðxÞdx þ b cos kxx0
ð1
�1


LðxÞ cos kxxdx þ b sin kxx0
ð1
�1


LðxÞ sin kxx dx


ð12:9Þ


The integrals in the second and third terms on right-hand side of this equation are,


repectively, the cosine and sine Fourier transforms from pp. 285, 286.


If we write


CðkxÞ ¼
ð1
�1


LðxÞcoskxxdx


and


SðkxÞ ¼
ð1
�1


LðxÞsinkxxdx


I


Figure 12.40 The profile of the Line Spread Function LðxÞ is formed by cutting an off-centre slice
from the three-dimensional Point Spread Function: LðxÞ is the area under the curve. Note that the
minimum values of LðxÞ are non-zero, unlike the curve of Figure 12.33
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we have


CðkxÞ � i SðkxÞ ¼
ð1
�1


LðxÞe�ikxxdx ¼ FðLxÞ ¼ MðkxÞe�i
ðkxÞ


where


MðkxÞ ¼ ½CðkxÞ2 þ SðkxÞ21=2


is the MTF and e�i
ðkxÞ is the PTF with


tan
 ¼ SðkxÞ=CðkxÞ


The OTF is, therefore, the Fourier transform of the LSF.


If the LSF is symmetrical, as in the case of the diffraction pattern, the odd terms in SðkxÞ
are zero, so the phase change 
 ¼ 0 and the OTF is real.


For a given frequency component n we can normalize LðxÞ to give


LnðxÞ ¼
LðxÞÐ1


�1 LnðxÞdx
¼ 1


so that equation (12.9) becomes


I0ðx0Þ ¼ a þ MðkxÞbðcoskxx0cos
� sinkxx0sin
Þ
¼ a þ MðkxÞbðcos kxx0 þ 
Þ


In the absence of aberrations, that is, in the symmetric diffraction limited case, 
 ¼ 0: I0 is


shown in Figure 12.41(a) and I0ðx0Þ in Figure 12.41(b) where 
 6¼ 0 due to aberrations.


a


b


I0(x)


(a)


Figure 12.41 (a) The object frequency component a þ b cos kxx is modified by the Optical Transfer
Function
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The effect of the MTF on the amplitude of the frequency components is to reduce the


contrast between parts of the image compared with corresponding parts of the object.


We have already met an expression for the contrast which we called Visibility on p. 360.


Thus, we can write


Contrast ¼ Imax � Imin


Imix þ Imin


¼ ða þ bÞ � ða � bÞ
ða þ bÞ þ ða � bÞ ¼


b


a
for the object


The image contrast MðkxÞb=a < b=a so the image contrast is less than that of the object.


Fresnel Diffraction


The Straight Edge and Slit


Our discussion of Fraunhofer diffraction considered a plane wave normally incident upon a


slit in a plane screen so that waves at each point in the plane of the slit were in phase. Each


point in the plane became the source of a new wavefront and the superposition of these


wavefronts generated a diffraction pattern. At a sufficient distance from the slit the


superposed wavefronts were plane and this defined the condition for Fraunhofer diffraction.


Its pattern followed from summing the contributions from these waves together with their


relative phases and on p. 21 we saw that these formed an arc of constant length. When the


a


M(kx)b


φ


I′(x′)


(b)


Figure 12.41 (b) In the image component a þ MðkÞbcos ðkxx
0 þ 
Þ, MðkÞ is the Modulation


Transfer Function, which is < 1 and the phase change 
 results from aberrations. The contrast in the
image is less than that in the object. Note that in (b) 
 is negative in the expression cosðkxx


0 þ 
Þ
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contributions were all in phase the arc was a straight line but as the relative phases


increased the arc curved to form closed circles of decreasing radii. The length of the chord


joining the ends of the arc measured the resulting amplitude of the superposition and the


square of that length measured the light intensity within the pattern.


Nearer the slit where the superposed wavefronts are not yet plane but retain their curved


character the diffraction pattern is that of Fresnel. There is no sharp division between


Fresnel and Fraunhofer diffraction, the pattern changes continuously from Fresnel to


Fraunhofer as the distance from the slit increases.


The Fresnel pattern is determined by a procedure exactly similar to that in Fraunhofer


diffraction, an arc of constant length is obtained but now it convolutes around the arms of a


pair of joined spirals, Figure 12.42, and not around closed circles.


An understanding of Fresnel diffraction is most easily gained by first considering, not the


slit, but a straight edge formed by covering the lower half of the incident plane wavefront


with an infinite plane screen. The undisturbed upper half of the wavefront will contribute


one half of the total spiral pattern, that part in the first quadrant.


0.5


0.5


u
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–0.5 0


y = Ú sin     p u 
2du1
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Ú cos     p u 
2du = x1
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Z3
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Figure 12.42 Cornu spiral associated with Fresnel diffraction. The spiral in the first quadrant
represents the contribution from the upper half of an infinite plane wavefront above an infinite
straight edge. The third quadrant spiral results from the downward withdrawal of the straight edge.
The width of the wavefront contributing to the diffraction pattern is correlated with the length u
along the spiral. The upper half of the wavefront above the straight edge contributes an intensity
(OZ1Þ2 which is the square of the length of the chord from the origin to the spiral eye. This intensity
is 0.25 of the intensity (Z1Z


0
1)


2 due to the whole wavefront
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The Fresnel diffraction pattern from a straight edge, Figure 12.43, has several significant


features. In the first place light is found beyond the geometric shadow; this confirms its


wave nature and requires a Huygens wavelet to contribute to points not directly ahead of it


(see the discussion on p. 305). Also, near the edge there are fringes of intensity greater and


less than that of the normal undisturbed intensity (taken here as unity). On this scale the


intensity at the geometric shadow is exactly 0.25.


To explain the origin of this pattern we consider the point O at the straight edge of Fig-


ure 12.44 and the point P directly ahead of O. The line OP defines the geometric shadow.


Below O the screen cuts off the wavefront. The phase difference between the contributions


to the disturbance at P from O and from a point H, height h above O is given by


�ðhÞ ¼ 2�


�
ðHP � OPÞ ’ 2�


�


1


2


h2


l


where OP ¼ l and higher powers of h2=l2 are neglected.


We now divide the wavefront above O into strips which are parallel to the infinite


straight edge and we call these strips ‘half period zones’. This name derives from the fact


that the width of each strip is chosen so that the contributions to the disturbance at P from


the lower and upper edges of a given strip differ in phase by � radians.


Since the phase �ðhÞ / h2 we shall not expect these strips or half period zones to be of


equal width and Figure 12.45 shows how the width of each strip decreases as h increases.


The total contribution from a strip will depend upon its area; that is, upon its width. The


amplitude and phase of the contribution at P from a narrow strip of width dh at a height h


above O may be written as ðdhÞ ei� where � ¼ �h2=�l.


This contribution may be resolved into two perpendicular components


dx ¼ dh cos�


Undisturbed
intensity


Geometric
shadow


1.0


0.25


Figure 12.43 Fresnel diffraction pattern from a straight edge. Light is found within the geometric
shadow and fringes of varying intensity form the observed pattern. The intensity at the geometric
shadow is 0.25 of that due to the undisturbed wavefront
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Figure 12.44 Line OP normal to the straight edge defines the geometric shadow. The wavefront at
height h above O makes a contribution to the disturbance at P which has a phase lag of �h2=�l with
respect to that from O. The total disturbance at P is the vector sum (amplitude and phase) of all
contributions from the wavefront section above O


h


3p2p 4pp


1


∆ (h ) in half period units


2


3


4


Z
on


e 
w


id
th


s


Figure 12.45 Variation of the width of each half period zone with height h above the straight edge
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and


dy ¼ dh sin�


If we now plot the vector sum of these contributions the total disturbance at P from that


section of the wavefront measured from O to a height h will have the component values


x ¼
Ð


dx and y ¼
Ð


dy. These integrals are usually expressed in terms of the dimensionless


variable u ¼ hð2=�lÞ1=2
, the physical significance of which we shall see shortly.


We then have � ¼ �u2=2 and dh ¼ ð�l=2Þ1=2
du and the integrals become


x ¼
ð


dx ¼
ð u


0


cos ð�u2=2Þ du


and


y ¼
ð


dy ¼
ð u


0


sin ð�u2=2Þ du


These integrals are called Fresnel’s Integrals and the locus of the coordinates x and y


with variation of u (that is, of h) is the spiral in the first quadrant of Figure 12.42. The


complete figure is known as Cornu’s spiral.


As h, the width of the contributing wavefront above the straight edge, increases, we


measure the increasing length u from 0 along the curve of the spiral in the first quadrant


unit, as h and u ! 1 we reach Z1 the centre of the spiral eye with coordinate x ¼ 1
2
; y ¼ 1


2
.


The tangent to the spiral curve is


dy


dx
¼ tan


�u2


2


and this is zero when the phase


�ðhÞ ¼ �h2=�l ¼ �u2=2 ¼ m�


where m is an integer so that u ¼ pð2mÞ relates u, the distance measured along the spiral to


m the number of half period zones contributing to the disturbance at P. The total intensity at


P due to all the half period zones above the straight edge is given by the square of the


length of the ‘chord’ OZ1. This is the intensity at the geometric shadow.


Suppose now that we keep P fixed as we slowly withdraw the screen vertically


downwards from O. This begins to reveal contributions to P from the lower part of the


wavefront; that is, the part which contributes to the Cornu spiral in the third quadrant. The


length u now includes not only the whole of the upper spiral arm but an increasing part of


the lower spiral until, when u has extended to Z2 the ‘chord’ Z1Z2 has its maximum value


and this corresponds to the fringe of maximum intensity nearest the straight edge. Further


withdrawal of the screen lengthens u to the position Z3 which corresponds to the first


minimum of the fringe pattern and the convolutions of an increasing length u around the
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spiral eye will produce further intensity oscillations of decreasing magnitude until, with the


final removal of the screen, u is now the total length of the spiral and the square of the


‘chord’ length Z1Z 0
1 gives the undisturbed intensity of unit value. But Z1Z 0


1 ¼ 2Z1O so


that the undisturbed intensity (Z1Z 0
1)2 is a factor of four greater than (Z1O)2 the intensity


at the geometric shadow.


The Fresnel diffraction pattern from a slit may now be seen as that due to a fixed height h


of the wavefront equal to that of the slit width. This defines a fixed length u of the spiral


between the end points of which the ‘chord’ is drawn and its length measured and squared


to give the intensity. At a given distance from the slit the intensity at a point P in the


diffraction pattern will correlate with the precise location of the fixed length u along the


spiral. At the centre of the pattern P is symmetric with respect to the upper and lower edges


of the slit and the fixed length u is centred about O (Figure 12.46). As P moves across the


pattern towards the geometric shadow the length u moves around the convolutions of the


spiral. In the geometric shadow this length is located entirely within the first or third


quadrant of the spiral and the magnitude of the ‘chord’ between its ends is less than


OZ1. When the slit is wide enough to produce the central minimum of the diffraction


pattern in Figure 12.47 the length u is centred at O with its ends at Z3 and Z4 in


Figure 12.46.


0.5
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Figure 12.46 The slit width h defines a fixed length u of the spiral. The intensity at a point P in the
diffraction pattern is correlated with the precise location of u on the spiral. When P is at the centre
of the pattern u is centred on O and moves along the spiral as P moves towards the geometric
shadow. Within the geometric shadow the chord joining the ends of u is less than OZ1
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Circular Aperture (Fresnel Diffraction)


In this case the half period zones become annuli of decreasing width. If rn is the mean


radius of the half period zone whose phase lag is n� with respect to the contribution from


the central ring the path difference in Figure 12.48 is given by


NP � OP ¼ � ¼ n�=2 ¼ 1
2


r 2
n=l


Unlike the rectangular example of the straight edge where the area of the half period


zone was proportional to its width dh each zone here has the same area equal to ��l.


Each zone thus contributes equally to the disturbance at P except for a factor arising


from the rigorous Kirchhoff theory which, until now, we have been able to ignore. This


is the so-called obliquity factor cos � where � is shown in the figure. This factor is


negligible for small values of n but its effect is to reduce a zone contribution as n


increases. A large circular aperture with many zones produces, in the limit, an undisturbed


normal intensity on the axis and from Figure 12.49 where we show the magnitude


and phase from successive half zones we see that the sum of these vectors which represents


the amplitude produced by an undisturbed wave is only half of that from the innermost


zone.


It is evident that if alternate zones transmit no light then the contributions from the


remaining zones would all be in phase and combine to produce a high intensity at P similar


Slit width


Intensity


Figure 12.47 Fresnel diffraction pattern from a slit which is wide enough for the spiral length u to
be centred at O and to end on points Z3 and Z4 of Figure 12.46. This produces the intensity minimum
at the centre of the pattern
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to the focusing effect of a lens. Such circular ‘zone plates’ are made by blacking out the


appropriate areas of a glass slide, Figure 12.50. A further refinement increases the intensity


still more. If the alternate zone areas are not blacked out but become areas where the


optical thickness of the glass is reduced, via etching, by �=2 the light transmitted through


these zones is advanced in phase by � rad so that the contributions from all the zones are


now in phase.


l0 P


rn


N
χ


Figure 12.48 Fresnel diffraction from a circular aperture. The mean radius r n defines the half period
zone with a phase lag of n� at P with respect to the contribution from the central zone. The obliquity
angle � which reduces the zone contribution at P increases with n


Figure 12.49 The vector contributions from successive zones in the circular aperture. The
amplitude produced by an undisturbed wave is seen to be only half of that from the central zone.
Removing the contributions from alternate zones leaves the remainder in phase and produces a very
high intensity. This is the principle of the zone plate of Figure 12.50
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Holography


Why is it that when we observe an object we see it in three dimensions but when we


photograph it we obtain only a flat two dimensional distribution of light intensity? The


answer is that the photograph has lost the information contained in the phase of the


incident light. Holographic processes retain this information and a hologram reconstructs a


three-dimensional image.


The principle of holography was proposed by Gabor in 1948 but its full development


needed the intense beams of laser light. A hologram requires two coherent beams and the


holographic plate records their interference pattern. In practice both beams derive from the


same source, one serves as a direct reference beam the other is the wavefront scattered from


the object.


Figure 12.51 shows one possible arrangement where a partly silvered beam splitter


passes the direct reference beam and reflects light on to the object which scatters it on to


the photographic plate. Mirrors or deviating prisms are also used to split the incident beam.


In Figure 12.51 let the reference beam amplitude be A0 e i!t. If the holographic plate lies


in the yz plane both the amplitude and phase of scattered light which strikes a given point


ðy; zÞ on the plate will depend on these co-ordinates. We simplify the analysis by


considering only the y co-ordinate shown in the plane of the paper and we represent the


scattered light in amplitude and phase as a function of y, namely


AðyÞ eið!tþ
ðyÞÞ


It is this information we shall wish to recover.


Figure 12.50 Zone plate produced by removing alternate half zones from a circular aperture to
leave the remaining contributions in phase
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We may now write the resulting amplitude at y (after removing the common ei!t


factor) as


A ¼ A0 þ AðyÞ ei
ðyÞ


The intensity is therefore


I ¼ AA� ¼ ½A0 þ AðyÞ ei
ðyÞ½A0 þ AðyÞ e�i
ðyÞ
¼ A2


0 þ AðyÞ2 þ A0AðyÞ½ei
ðyÞ þ e�i
ðyÞ


The holographic plate records this intensity as shown in Figure 12.52 where the


reference intensity A2
0 is modulated by the terms which contain AðyÞ and 
ðyÞ, the original


scattered amplitude and phase information. This modulation shows of course as contrasting


interference fringes whose local intensity is governed by the amplitude AðyÞ and whose


distribution along the y axis is determined by the phase 
ðyÞ. The wavefront scattered by


the object is now reconstructed to form the holographic image. This is done by shining the


reference beam through the processed hologram which acts as a diffraction grating. The


greater the recorded intensity the lower the transmitted amplitude. If the developed


photographic emulsion possessed idealized characteristics the relation between


the transmitted amplitude of the reference beam and the exposure would be linear.


Beam
splitter


Reference
beam


Laser
beam


Hologram


Scattered
wavefront


Object


y


Figure 12.51 The hologram records the interference between two parts of the same laser beam. The
original beam is divided by the partially silvered beam splitter to form a direct reference beam and a
wavefront scattered from the object. The amplitude and phase information contained in the
scattered wavefront must be preserved and recovered
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Exposure defines the product of incident intensity and exposure time. The curve relating


the characteristics for a real holographic emulsion is shown in Figure 12.53 and this is


linear only over a limited range near the centre indicated by the dotted lines. This imposes


several conditions on practical holography.


In the first place the exposure must be correctly chosen at the value EC. Secondly, the


value of the reference beam intensity A2
0 must be chosen to produce the correct transmitted


amplitude T0 on the vertical axis of Figure 12.53. This value of T0 is at the centre of the


linear range. Finally, the modulation of A2
0 by the scattered intensity AðyÞ2


in Figure 12.53


must be small enough for the transmission of the modulated signal to remain within the


linear range of the characteristic curve. Excursions outside this range introduce non-linear


distortions by generating extra Fourier frequency components (the situation is similar to


that for characteristic curves in electronic amplifiers).


Experimentally this final restriction requires AðyÞ � A0.


Shining the reference beam through the processed hologram produces a transmitted


amplitude


A0T ¼ A3
0 þ A2


0AðyÞ ei
ðyÞ þ A2
0AðyÞ e�i
ðyÞ


¼ A2
0½A0 þ AðyÞ ei
ðyÞ þ AðyÞ e�i
ðyÞ


where we have neglected the AðyÞ2
term as � A2


0 and have written the negative and


positive exponential terms separately. This has a profound physical significance for we see


that apart from the common constant factor A2
0, the observed transmitted beam has three


components A0;AðyÞ ei
ðyÞ and AðyÞ e�i
ðyÞ.


Distance along hologram


Intensity
recorded
by hologram


A 0
2


y


Figure 12.52 Total intensity recorded as a function of y by the holographic plate. The direct
reference beam intensity A 2


0 is modulated by information from the scattered wavefront. This shows as
variations in the intensity of an interference fringe pattern
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Exposure = intensity × time
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Figure 12.53 Characteristic curve of a real holographic emulsion (transmittance versus exposure).
Only the central linear section of the curve is used. The transmittance T 0 (governed by the reference
beam intensity A 2


0) is chosen with the critical exposure E C to produce the central point on the linear
part of the curve. Information from the scattered wavefront must keep the modulations within the
linear range for faithful reproduction free from distortion
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Figure 12.54 (a) Shining the reference beam through the processed hologram produces three
components A 0; AðyÞ e i
ðyÞ and AðyÞ e�i
ðyÞ in the directions shown. Movement of the eye from X to Y
about the component AðyÞ e i
ðyÞ resolves the separate points O and O 0 on the image of the object to
reveal its three dimensional nature. (b) This image at O is seen to be virtual while the image
associated with the component AðyÞ e�i
ðyÞ is real. This real image is ‘phase reversed’ and the object
appears ‘inside out’
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The first term, A0, shows that the incident reference beam has continued beyond the


hologram to form the central beam of Figure 12.54a. The second component AðyÞ ei
ðyÞ has


the same form in amplitude and phase as the original wavefront scattered from the object.


As shown in Figure 12.54b it is seen to be a wavefront diverging from a virtual image of


the object having the same size and three dimensional distribution as the object itself.


Moving the eye across this beam in 12.54a exposes a different section OO 0 of the virtual


image to produce a three dimensional effect.


The third component of the transmitted beam is identical with the second except for the


phase reversal; it has a negative exponential index. It forms another image, in this case a


real image often referred to as ‘pseudoscopic’. It is an image of the original object turned


inside out. All contours are reversed, bumps become dents and the closest point on the


original object when viewed directly by the observer now becomes the most distant.


Problem 12.1
Suppose that Newton’s Rings are formed by the system of Figure 12.4 except that the plano convex


lens now rests centrally in a concave surface of radius of curvature R1 and not on an optical flat.


Show that the radius rn of the nth dark ring is given by


r 2
n ¼ R1R2n�=ðR1 � R2Þ


where R2 is the radius of curvature of the lens and R1 > R2 (note that R1 and R2 have the


same sign).


Problem 12.2
Light of wavelength � in a medium of refractive index n1 is normally incident on a thin film of


refractive index n2 and optical thickness �=4 which coats a plane substrate of refractive index n3.


Show that the film is a perfect anti-reflector ðr ¼ 0Þ if n 2
2 ¼ n 1n3.


Problem 12.3
Two identical radio masts transmit at a frequency of 1500 kc s�1 and are 400 m apart. Show that the


intensity of the interference pattern between these radiators is given by I ¼ 2I0½1 þ cos ð4� sin �Þ,
where I0 is the radiated intensity of each. Plot this intensity distribution on a polar diagram in which


the masts lie on the 90	–270	 axis to show that there are two major cones of radiation in opposite


directions along this axis and 6 minor cones at 0	, 30	, 150	, 180	, 210	 and 330	.


Problem 12.4
(a) Two equal sources radiate a wavelength � and are separated a distance �=2. There is a phase


difference �0 ¼ � between the signals at source. If the intensity of each source is I s, show that the


intensity of the radiation pattern is given by


I ¼ 4I s sin2 �


2
sin �


� �
where the sources lie on the axis ��=2.


Plot I versus �.
(b) If the sources in (a) are now �=4 apart and � 0 ¼ �=2 show that


I ¼ 4I s cos2 �


4
ð1 þ sin �Þ


h i
Plot I versus �.
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Problem 12.5
(a) A large number of identical radiators is arranged in rows and columns to form a lattice of which


the unit cell is a square of side d. Show that all the radiation from the lattice in the direction � will be


in phase at a large distance if tan � ¼ m=n, where m and n are integers.


(b) If the lattice of section (a) consists of atoms in a crystal where the rows are parallel to the crystal


face, show that radiation of wavelength � incident on the crystal face at a grazing angle of � is


scattered to give interference maxima when 2d sin � ¼ n� (Bragg reflection).


Problem 12.6
Show that the separation of equal sources in a linear array producing a principal maximum along the


line of the sources ð� ¼ ��=2Þ is equal to the wavelength being radiated. Such a pattern is called


‘end fire’. Determine the positions (values of �) of the secondary maxima for N ¼ 4 and plot the


angular distribution of the intensity.


Problem 12.7
The first multiple radio astronomical interferometer was equivalent to a linear array of N ¼ 32


sources (receivers) with a separation f ¼ 7 m working at a wavelength � ¼ 0:21 m. Show that the


angular width of the central maximum is 6 min of arc and that the angular separation between


successive principal maxima is 1	42 0.


Problem 12.8
Monochromatic light is normally incident on a single slit, and the intensity of the diffracted light at


an angle � is represented in magnitude and direction by a vector I, the tip of which traces a polar


diagram. Sketch several polar diagrams to show that as the ratio of slit width to the wavelength


gradually increases the polar diagram becomes concentrated along the direction � ¼ 0.


Problem 12.9
The condition for the maxima of the intensity of light of wavelength � diffracted by a single slit of


width d is given by � ¼ tan�, where � ¼ �d sin �=�. The approximate values of � which satisfy this


equation are � ¼ 0;þ3�=2;þ5�=2, etc. Writing � ¼ 3�=2 � �; 5�=2 � �, etc. where � is small,


show that the real solutions for � are � ¼ 0, �1:43�;�2:459�;�3:471�, etc.


Problem 12.10
Prove that the intensity of the secondary maximum for a grating of three slits is 1


9
of that of the


principal maximum if only interference effects are considered.


Problem 12.11
A diffraction grating has N slits and a grating space f. If � ¼ �f sin �=�, where � is the angle of


diffraction, calculate the phase change d� required to move the diffracted light from the principal


maximum to the first minimum to show that the half width of the spectral line produced by the


grating is given by d � ¼ ðnN cot �Þ�1
, where n is the spectral order. (For N ¼ 14; 000; n ¼ 1 and


� ¼ 19	, d� � 5 s of arc.)


Problem 12.12
(a) Dispersion is the separation of spectral lines of different wavelengths by a diffraction grating and


increases with the spectral order n. Show that the dispersion of the lines when projected by a lens of


focal length F on a screen is given by


dl


d�
¼ F


d�


d�
¼ nF


f
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for a diffraction angle � and the nth order, where l is the linear spacing on the screen and f is the


grating space.


(b) Show that the change in linear separation per unit increase in spectral order for two wavelengths


� ¼ 5 � 10�7 m and �2 ¼ 5:2 � 10�7 m in a system where F ¼ 2 m and f ¼ 2 � 10�6 m is


2 � 10�2 m.


Problem 12.13
(a) A sodium doublet consists of two wavelength �1 ¼ 5:890 � 10�7 m and �2 ¼ 5:896 � 10�7 m.


Show that the minimum number of lines a grating must have to resolve this doublet in the third


spectral order is � 328.


(b) A red spectral line of wavelength � ¼ 6:5 � 10�7 m is observed to be a close doublet. If the two


lines are just resolved in the third spectral order by a grating of 9 � 10 4 lines show that the doublet


separation is 2:4 � 10�2 m.


Problem 12.14
Optical instruments have circular apertures, so that the Rayleigh criterion for resolution is given by


sin � ¼ 1:22�=a, where a is the diameter of the aperture.


s exaggerated. Consider OB II O′B
OA II O′A


A


B


i


0′


0


I′


I
S


Two points O and O 0 of a specimen in the object plane of a microscope are separated by a distance
s. The angle subtended by each at the objective aperture is 2i and their images I and I 0 are just
resolved. By considering the path difference between O 0A and O 0B show that the separation
s ¼ 1:22�=2 sin i.


Summary of Important Results


Interference: Division of Wavefront (Two Equal Sources)


Intensity


I ¼ 4I s cos2 �=2


where


I s ¼ source intensity


and


� ¼ 2�


�
(path difference)


� �
is phase difference
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Interference (N Equal Sources -- Separation f )


I ¼ I s


sin2 N�


sin2 �
where � ¼ �


�
f sin �


Principal Maxima


I ¼ N 2I s at f sin � ¼ n�


Fraunhofer Diffraction (Single Slit -- Width d)


Intensity


I ¼ I0


sin2 �


�2
where � ¼ �


�
d sin �


Intensity Distribution from N Slits (Width d -- Separation f )


I ¼ I0


sin2 �


�2


sin2 N�


sin2 �


(interference pattern modified by single slit diffraction envelope).


Resolving Power of Transmission Grating


�


d�
¼ nN


where n is spectral order and N is number of grating lines:


Expressible in terms of Bandwidth Theorem as


�	�t ¼ 1


where �	 is resolvable frequency difference and �t is the time difference between extreme


optical paths.


Resolving power


�


��
¼ 	


�	


��� ��� ¼ !


�!
¼ Q


where Q is the quality factor of the system.
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Wave Mechanics


The wave mechanics of Schrödinger (1926) and the equivalent matrix formulation by


Heisenberg (1926) are the basis of what is known as ‘modern physics’. Without exception


they have been successful in replacing or including classical mechanics over the whole


range of physics at atomic and molecular levels; these in turn govern the larger scale


macroscopic properties. Very high energy phenomena in the physics of elementary


particles still, however, present many problems.


In this chapter we shall be concerned only with Schrödinger’s wave mechanics and in the


way it displays the dual wave–particle nature of matter. This dual nature was first


established for electromagnetic radiation but the parallel attempt to establish the wave


nature of material particles is the basic history of twentieth century physics.


Origins of Modern Quantum Theory


In the nineteenth century interference and diffraction experiments together with classical


electromagnetic theory had confirmed the wave nature of light beyond all doubt but in


1901, in order to explain the experimental curves of black body radiation, Planck


postulated that electromagnetic oscillators of frequency � had discrete energies nh� where


n was an integer and h was a constant (p. 252). A quarter of a century was to elapse before


this was formally derived from the new quantum mechanics.


X-rays had been found by Roentgen in 1895, their wave-like properties were displayed


by the diffraction experiments of von Laue in 1912, and their electromagnetic nature was


soon proved. A much longer time was required to reconcile a wave nature with the


negatively charged particles which J. J. Thomson found in his cathode ray experiments of


1897. It was not until 1927 that interference effects from reflected or scattered electrons


were obtained by Davisson and Germer whilst in 1928 G. P. Thomson (the son of J. J.)


produced concentric ring diffraction patterns by firing electrons through a thin foil.


In the meantime, in 1906, Einstein had used Planck’s idea to explain the photoelectric


effect where light falling on a given surface caused electrons to be ejected. Einstein


considered the light beam as a stream of individual photons, or quanta of light, each of
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energy hv. Collisions between these quanta and electrons in the target material gave the


electrons sufficient energy to escape.


In 1912 the alpha particle scattering experiments of Rutherford led to his proposal that


the atom consisted of a small positively charged nucleus surrounded by enough negative


electrons to leave the atom electrically neutral. This atom was the model used by Bohr and


Sommerfeld in their ‘old quantum theory’, a mixture of classical mechanics and quantum


postulates, attempting to explain, amongst other things, the regularity of spectroscopic


series from radiating atoms. Electrons were required to orbit the nucleus at definite energy


levels (like planets round the Sun), and radiation at a fixed frequency � was given out when


an electron moved from a higher to a lower energy orbit with an energy difference


�E ¼ h�. These orbits were required to be stable or ‘stationary’ orbits with quantized, that


is, allowed values of energy and angular momentum. The fact that classical


electromagnetic theory had shown that an accelerating charge (electron in an orbit) was


itself a source of radiation remained an unresolved difficulty.


By 1920 Einstein had provided two of the vital tools necessary for further progress (a)


that a quantum of radiation has energy E ¼ h�, and (b) that a particle of momentum


p ¼ mv and rest mass m0 has a relativistic energy E where E 2 ¼ p2c2 þ ðm0c2Þ2
.


This relation established the equivalence of matter and energy; a stationary particle


v ¼ 0 has an energy E ¼ m0c2 where c is the velocity of light.


The time was now ripe for the final steps leading to the modern quantum theory. The first


of these was provided by Compton (1922–23) and the second by de Broglie in 1924.


Compton fired X-rays of a known frequency at a thin foil and observed that the


frequency � of the scattered radiation was independent of the foil material. This implied


that the scattering was the result of collisions between X-ray quanta of energy h� and the


electrons in the target material. In addition to scattering at the incident frequency a lower


frequency of scattered radiation was always found which depended only on the mass of the


scattering particles (electrons) and the angle of scattering. Compton showed that these


results were consistent if momentum and energy were conserved in an elastic collision


between two ‘particles’, the electron and an X-ray of energy h�, a rest mass m0 ¼ 0 and


(from Einstein’s relativistic energy equation), a momentum


p ¼ E


c
¼ h�


c
¼ h


�
;


where c ¼ ��.


De Broglie in 1924 proposed that if the dual wave-particle nature of electromagnetic


fields required a particle momentum of p ¼ h=�, it was possible that a wavelength � of a


‘matter’ field could be associated with any particle of momentum p ¼ mv to give the


relation p ¼ h=�. His argument was as follows.


If the phase velocity of such a ‘matter’ wave obeys the usual relation


v p ¼ ��


where � is the frequency, the assumption that any particle has a momentum p ¼ h=�
together with Einstein’s expression E ¼ h� yields v p ¼ E=p.
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The theory of relativity gives, for a particle of rest mass m0 and velocity v an energy


E ¼ mc2 and a momentum p ¼ mv, where


m ¼ m0 1 � v 2


c2


� ��1=2


is the particle mass at velocity v. For such a particle the phase velocity


v p ¼ E


p
¼ c2


v


that is,


vv p ¼ c2


(an expression we met earlier for the wave guides of p. 243).


This gives a phase velocity v p > c for a particle velocity v < c. However, the energy in


the de Broglie wave (or particle) travels with the group velocity


v g ¼ @!


@k


which, for


E ¼ h� ¼ h


2	
!


and


p ¼ h


�
¼ h


2	
k


gives


v g ¼ @!


@k
¼ @E


@p


Such a particle with relativistic energy E where


E 2 ¼ p2c2 þ ðm0c2Þ2


has


2E
@E


@p
¼ 2pc2
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or


v g ¼ @E


@p
¼ pc2


E
¼ vc2


c2
¼ v


so that the group velocity of de Broglie matter wave corresponds to the particle velocity v.
Even the ‘old quantum theory’ of Bohr–Sommerfeld gained something from de


Broglie’s hypothesis. Their postulate that the angular momentum of stationary orbits was


restricted to integral (quantum) numbers of the unit angular momentum h was shown, for


the circular orbit of radius r, to yield


2	rp ¼ nh


or


2	r ¼ nh


p
¼ n�


so that the circumference of a stationary orbit was a standing wave system and contained an


integral number n of �, the de Broglie wavelength.


Within three years, however, such quantum numbers ceased to be assumptions. They


were the natural outcome of the new quantum theory of Schrödinger and Heisenberg.


Heisenberg’s Uncertainty Principle


Although, as we shall see, Schrödinger’s equation takes the form of a standing wave


equation, the fitting of an integral number of de Broglie standing waves around a Bohr orbit


presents a fundamental difficulty. The azimuthal symmetry of such a pattern, Figure 13.1,


Figure 13.1 Integral number of de Broglie standing waves � ¼ h=p around a circular Bohr orbit
does not allow the exact position of the electron to be specified at a particular time
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representing an electron in an orbit, does not allow the exact position of the electron to be


specified at a particular time. This dilemma was resolved by Heisenberg on the basis of the


Bandwidth Theorem we first met on p. 134.


There, a group of waves with a group velocity v g and a frequency range �� superposed


effectively only for a time �t where


���t � 1


Similarly, a group in the wave number range �k superposed in space over a distance �x


where


�x�k � 2	


But the velocity of the de Broglie matter wave is essentially a group velocity with a


momentum


p ¼ h


�
¼ h


2	
k ¼ �hk


where


�h ¼ h


2	


so


�p ¼ �h�k


and the Bandwidth Theorem becomes Heisenberg’s Uncertainty Principle


�x�p � h


Since


E ¼ h� ¼ h


2	
! ¼ �h!


it follows that


�E


��
¼ �E�t � h


and


�E � �h�!


are also expressions of Heisenberg’s Uncertainty Principle.
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This relation sets a fundamental limit on the ultimate precision with which we can know


the position x of a particle and the x component of its momentum. If Figure 13.2 shows a


wave group representing the particle, the range �x shows the uncertainty of the position of


the particle in the range of space over which it could be found, with the probability of its


being at a particular place given by the square of the wave amplitude of that position. The


relation


�x�p � h


means that the velocity of the particle ð p ¼ mvÞ is also uncertain, the more accurate the


knowledge of the particle position, the less certain that of the value of its velocity. If the


particle is ‘observed’ at some later time, dispersion of the group will have increased the


range �x and decreased the amplitude. The uncertainty of the position has increased and


the probability of its being at any one place has become less. But this is because of the


original uncertainty of its velocity, through �p, which makes an accurate forecast of its


position after time t even more unlikely.


The shape of the wave group above is often taken as a Gaussian curve written �ðx; tÞ
with a width �x at t ¼ 0 where the value �ðx; tÞ is e�1 of its maximum value (see p. 289).


PðxtÞ defines the probability density of finding the particle at a position �x, i.e. within


the range x and x þ�x.


The position x and momentum px of a particle are conjugate parameters, so the


representation of the particle in momentum space �ðpx; tÞ is the Fourier transform of


�ðx; tÞ and �ðpx; tÞ is also a Gaussian curve with a width �px where �ðpxtÞ is e�1 of its


maximum value.


If the group velocity of the wave packet is vg ¼ p0=m a rigorous treatment of the time


development of these functions leads to the conclusion that PðxtÞ falls to e�1 of its


maximum value at the points where


x � vgt ¼ ��x


∆ x


∆ x


x


Wave group


Same group
after time t


Figure 13.2 A wave group representing a particle showing dispersion after time t. The square of the
wave amplitude at any point represents the probability of the particle being in that position, and the
dispersion represents the increasing uncertainty of the particle position with time (Heisenberg’s
Uncertainty Principle)
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where


�xðtÞ ¼ �h


px


1 þ ð�pxÞ4


m2�h2
t2


" #1
2


and hence increases with time.


If the time is sufficiently small so that


t � t1 ¼ m�h


ð�pxÞ2


the second term in the bracket is negligible and the wave packet propagates with only a


very small change in its width.
As an example, a Gaussian wave packet for an electron localized at time t ¼ 0 to within


a distance of 10�10m (atomic dimensions) with �px ¼ �h=�x � 10�24kg 	 m 	 s�1 will have


spread to twice its size at time t ¼ t1


ffiffiffi
3


p
� 10�16s.


An example of the relation


�E �t � h


may be found in considering the time spent by an electron in an atomic orbit. In a stable


orbit this time �t is long and the energy uncertainty �E is small so the energy levels of


stable orbits are well defined. When an electron changes energy levels and radiation is


emitted the time in the orbit may be short and the energy levels ill defined so that the term


�E contributes to the breadth of a spectral line.


(Problems 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 13.10)


Schrödinger’s Wave Equation


The old quantum theory had sought to establish rules for the existence of discrete


frequencies and energy levels. An integral number of de Broglie half wavelengths could be


fitted around a circular Bohr orbit. Both of these facts are consistent with the classical


standing wave systems we examined in Chapters 5 and 9 when waves travelling between


rigid boundaries were perfectly reflected.


In Chapter 5 we saw that the transverse displacement yðxtÞ of a string of length l with


both ends fixed obeys the wave equation


@ 2y


@x2
� 1


v 2
p


@ 2y


@t 2
¼ 0


where v p is the wave velocity.


The x and t dependence could be separated in the solution for standing waves to give


yðx; tÞ ¼ A sin
!nx


v p


sin!nt
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where n could take the integral values n ¼ 1; 2; 3, etc. to give the discrete eigenfrequencies,


!n ¼ n	v p


l


The solution yðx; tÞ corresponding to a given !n is called an eigenfunction or a wave


function.


In developing the Schrödinger wave equation which applies to particle behaviour we use


arguments below which in no way constitute a proof because wave mechanics cannot be


derived from classical mechanics. Wave mechanics is based on certain postulates the


validity of which can be confirmed only by the accuracy of the predicted results.


From the preceding sections we have the representation of a particle as a matter wave


with energy E ¼ �h!, momentum p ¼ �hk and velocity v g ¼ @!=@k.


Wave mechanics uses the notation


�ðx; tÞ ¼ �0 e�ið!t�kxÞ ¼ �0 e iðpx�EtÞ=�h


to define the amplitude of a matter wave at a point x at time t. The physical significance of


 is amplified on p. 422 but for the moment we note the reversed sign of the exponential


index which follows the convention used in all books on quantum mechanics. This merely


introduces a 	 rad phase difference from the notation consistently used in the earlier


chapters of this book but the new convention will be used throughout this chapter to avoid


confusion with other texts and attention will be carefully drawn to any possible ambiguity.


In classical mechanics the total energy E of a particle of mass m and momentum p in a


conservative field of potential V is given by


E ¼ p2=2m þ V


Differentiating �ðx; tÞ gives


@ 2


@x2
�ðx; tÞ ¼ �p2


�h2
�ðx; tÞ


and inserting this value of p2 in the classical energy equation above gives


�h2


2m


@ 2


@x2
�ðx; tÞ þ ðE � VÞ�ðx; tÞ ¼ 0


If we now express �ðx; tÞ ¼  ðxÞ e�i!t we may cancel the common e�i!t factor from the


equation above to obtain the time independent Schrödinger wave equation


�h2


2m


@ 2


@x2
 ðxÞ þ ðE � VÞ ðxÞ ¼ 0


This time independent wave equation will give states of constant frequency; that is, of


constant energy, and these are the only states we shall consider in this book.
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Note that this equation has the same form as the standing wave equation we first met on


p. 124.


States which are not of constant energy require the time dependence to be retained in


Schrödinger’s equation. We do this by using the fact that


@


@t
�ðx; tÞ ¼ �iE


�h
�ðx; tÞ


and inserting this value of E in the classical energy equation. This gives the time dependent


Schrödinger wave equation


��h2


2m


@ 2


@x2
�ðx; tÞ þ V�ðx; tÞ ¼ i�h


@


@t
�ðx; tÞ:


One-dimensional Infinite Potential Well


Consider as a first example the case of a particle constrained to move in a region between


x ¼ 0 and x ¼ a where the potential V ¼ 0. At x ¼ 0 and x ¼ a the potential walls are


infinitely high as shown in Figure 13.3. This is an idealized form of the potential seen by an


electron in the low energy levels near the nucleus of an atom.


h 
2


 p 
2


 


2m a 
2


V (x )


V (x ) = 0


n = 3


x = ax = 0


y = 0y = 0 y n =  A sin k n x


E 3 = 9E 1


n = 2 E 2 = 4E 1


n = 1 E 1 =


Figure 13.3 An infinitely deep potential well showing allowed energy levels En for a particle
constrained to move within it with wave function  n ¼ A sin knx where k 2


n ¼ 2mE=�h2 and m is the
particle mass
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Since VðxÞ ¼ 0 for 0 < x < a Schrödinger’s equation becomes


@ 2 ðxÞ
@x2


þ 2mE


�h2
 ¼ 0


which may be written, as on p. 124, in the form


@ 2 


@x2
þ k 2 ¼ 0


with


k 2 ¼ 2mE


�h2


The boundary conditions are that  ðxÞ ¼ 0 at x ¼ 0 and x ¼ a where VðxÞ becomes


infinite, whilst the other terms in the equation remain finite. The particle must lie within the


well and classically, whatever the value of its energy E it will rebound elastically off the


potential ‘walls’. When moving to the right the particle behaviour may be represented by a


wave function of the form eþikx which satisfies Schrödinger’s equation, and when moving


to the left by a wave function of the form


e�ikx


But, as with the waves on the string, perfect reflection which reverses the amplitude


allows  nðxÞ, the solution of Schrödinger’s equation, to represent a standing wave system


at !n; expressed in the form


 nðxÞ ¼ C eik nx � C e�ik nx


¼ A sin knx


where


A ¼ C


2i


The boundary condition  nðxÞ ¼ 0 at x ¼ a gives kna ¼ n	 for n ¼ 1; 2; 3, etc. i.e.


kn ¼ n	=a.


Hence


k 2
n ¼ 2mEn


�h2
¼ n2	2


a2


giving energy eigenvalues


En ¼ n2	2�h2


a22m
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Thus, we see that discrete energy values governed by the quantum number n arise naturally


from the application of boundary conditions to the wave function solutions of


Schrödinger’s equation. Values of the particle momentum are also quantized since


p ¼ h


�
¼ �hk ¼ n	�h


a


It is evident that in an infinite potential well, an electron or particle cannot have an arbitrary


energy but must take only the quantized values En. This restriction will hold whenever


Schrödinger’s equation is solved for a potential VðxÞ which imposes boundary conditions


constraining the particle to move in a limited region.


The wave functions  nðxÞ for n ¼ 1; 2; 3 are plotted in Figure 13.4 showing them to be


identical with the allowed amplitude functions for standing waves on a vibrating string


with fixed ends. Note that the interval between allowed energy states decreases as either the


mass of the particle or the dimensions of the potential box increase relative to h. For


particles of large mass and systems of large dimensions the allowed energy states form, for


all practical purposes, a continuum and are no longer quantized. Thus, in passing from


atomic to much larger dimensions the results of quantum mechanics approach those of


classical physics.


We see that the minimum value of the energy of the particle in the potential well is not


zero but


E1 ¼ �h2	2


2ma2


y 2


y 3


y 1


n = 1


x = 0 x = 0x = a x = a


n = 2


n = 3


y 3
2


y 2
2


y 1
2


Figure 13.4 Wave functions  nðxÞ and probability densities j nðxÞj 2 for the first three allowed
energy levels in an infinitely deep potential well of width a
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This minimum energy is related to Heisenberg’s Uncertainty Principle


�x�p � h


The uncertainty in the position of the particle is obviously �x ¼ a and the particle


momentum p may be in either the positive or negative x direction giving an uncertainty


�p ¼ 2p


Thus


�x�p ¼ a 	 2p � h


or


p � h


2a


Now, for VðxÞ ¼ 0


E ¼ p2


2m
� h2


8ma2
� �h2	2


2ma2


This is an example of the so-called zero point energy. We shall meet others.


(Problem 13.11)


Significance of the Amplitude wnðxÞ of the Wave Function


In Figure 13.4 the amplitude  nðxÞ of the wave function is plotted for the values n ¼ 1; 2; 3
together with the values


j nðxÞj2


In the waves we have met so far, the amplitude, or rather the amplitude squared, has been a


measure of the intensity of the wave. At a position of high amplitude, the wave was more


intense—more energy was localized there. Here we have expressed the motion of a particle


confined to a small region of space in terms of its associated matter wave. The amplitude of


the wave function  ðxÞ varies from point to point within the small region in which the


particle is to be found. Outside the infinite well  ðxÞ is zero. The intensity of the matter


wave is written


j ðxÞj2 ¼  �ðxÞ ðxÞ


where the complex conjugate  �ðxÞ indicates that  ðxÞ may sometimes be complex. Since


the matter field describes the motion of the particle we may say that the regions of space in
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which the particle is more likely to be found are those in which the intensity j ðxÞj2
is


large, or, more formally


‘the probability of finding the particle described by the wave function  ðxÞ in the
interval dx around the point x is j ðxÞj2


dx’.


The probability per unit length of finding the particle at x is


PðxÞ ¼ j ðxÞj2


In three dimensions a wave function would be of the form  ðx; y; zÞ and the probability of


finding the particle in the unit volume element surrounding the point xyz is


PðxyzÞ ¼ j ðxyzÞj2


The probability of finding the particle within a finite volume V is obviously


PV ¼
ð


V


j ðxyzÞj2
dx dy dz


Now the particle must always be somewhere in space so, in extending the integral over all


space, the probability becomes a certainty; that is, it equals unity, orð
all space


j ðxyzÞj2
dx dy dz ¼ 1


This process of integrating over all possible locations to give unity is called


normalization and it always imposes restrictions on the form of  ðx; y; zÞ which must


tend to zero as x, y or z tends to infinity.


Normalization determines the value of the constant A in our wave function


 nðxÞ ¼ A sin
n	x


a


for the case of the infinite potential well.


There ð1
�1


j nðxÞj2
dx ¼


ð a


0


j nðxÞj2
dx


¼ A2


ð a


0


sin2 n	x


a
dx ¼ A2 a


2
¼ 1


Hence


A ¼
ffiffiffi
2


a


r
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and the normalized wave function


 nðxÞ ¼
ffiffiffi
2


a


r
sin


n	x


a


(Problem 13.12)


Particle in a Three-dimensional Box


Suppose the particle is confined to a rectangular volume abc at the bottom of an infinitely


deep potential well ðV ¼ 0Þ where a, b and c are the lengths of the sides of the rectan-


gular box.


The energy of the particle is then


E ¼ p2


2m
¼ 1


2m
ð p2


x þ p2
y þ p2


z Þ


where the momentum components are


px ¼ n1


	�h


a


py ¼ n2


	�h


b


pz ¼ n3


	�h


c


and n1, n2 and n3 are integers.


The energy levels allowed in the box are therefore given by


E ¼ 	2�h2


2m


n2
1


a2
þ n2


2


b2
þ n2


3


c2


� �


and solutions for the space part of the wave function may be written


 ðx; y; zÞ ¼ A sin
n1	x


a
sin


n2	y


b
sin


n3	z


c


in accordance with the three-dimensional normal mode solution of p. 249.


If the box is cubical so that a ¼ b ¼ c the allowed energy levels become


E ¼ 	2�h2


2ma2
ðn2


1 þ n2
2 þ n2


3Þ ¼
	2�h2


2ma2
k 2


where k 2 ¼ n2
1 þ n2


2 þ n2
3 with wave functions


 ðxyzÞ ¼ A sin
n1	x


a
sin


n2	y


a
sin


n3	z


a
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We saw, however, on p. 250 that combinations of different n values can give the same k


value; that is, the same energy value. When n1, n2 and n3 are permuted without changing


the k value, the wave function is also changed so that a certain energy level may be


associated with several different wave functions or dynamical states. The energy level is


said to be degenerate, the order of degeneracy being defined by the number of different or


independent wave functions associated with the given energy.


In the case of the cubic potential box, the lowest energy level is 3E1, i.e.


ðn1 ¼ n2 ¼ n3 ¼ 1Þ


where


E1 ¼ 	2�h2


2ma2


The next energy level is given by 6E1, with a degeneracy of 3 where the n values are


given by (2, 1, 1) (1, 2, 1) and (1, 1, 2). Higher energy values with degeneracy orders are


shown in Table 13.1 above.


(Problem 13.13)


Number of Energy States in Interval E to E þ dE


As long as the dimensions of the cubical box above are small the energy levels remain


distinct. However, when the volume increases, as is the case for free electrons in a metal,


successive energy levels become so close that an almost continuous spectrum is formed.


If we wish to find how many energy levels may be contained in the small energy range


dE when the potential box is very large, we have only to apply the result of p. 251 where


we found that the number of possible normal modes of oscillation per unit volume of an


enclosure in the frequency range � to � þ d� is given by


dn ¼ 4	� 2d�


c3


Table 13.1


Energy n1, n 2, n 3 Combinations Degeneracy


3E1 (1, 1, 1) 1


6E1 (2, 1, 1) (1, 2, 1) (1, 1, 2) 3


9E1 (2, 2, 1) (2, 1, 2) (1, 2, 2) 3


11E1 (3, 1, 1) (1, 3, 1) (1, 1, 3) 3


12E1 (2, 2, 2) 1


14E1 (1, 2, 3) (3, 2, 1) (2, 3, 1) (1, 3, 2) (2, 1, 3) (3, 1, 2) 6
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There we stressed that the result was independent of any particular system and we applied


it to Planck’s Radiation Law and Debye’s Theory of Specific Heats. Here we use it with


E ¼ p2


2m
¼ h� and p ¼ E


c
¼ h�


c�
so that


dE ¼ p


m
dp ¼ h d�


and


dp ¼ h d�


c


�


to give the number of states per unit volume in the energy interval dE as


dnðEÞ ¼ 4	ð2m3Þ1=2
E 1=2


h3
dE


This may be applied directly to determine how free electrons in a metal may distribute


themselves in a band of energies from zero to some value E. Each energy level can


accommodate two electrons (with opposing spins) according to Pauli’s Principle so the


total number of electrons per unit volume in the energy range zero to E is


n ¼
ð


dnðEÞ ¼ 2 	 4	ð2m3
eÞ


1=2


h3


ð E


0


E 1=2 dE


¼ 16	ð2m3
eÞ


1=2


3h3
E 3=2


where m e is the electron mass.


If the metal is in its ground state the available electrons will occupy the lowest possible


energy levels, and if the total number of electrons per unit volume n0 is less than the total


number of energy levels in the band, then the electrons will occupy all energy states up to a


maximum energy EF called the Fermi Energy which is given by


n0 ¼ 16	ð2m3
eÞ


1=2
E


3=2
F


3h3


Typical values of EF are of the order of 5 eV ð1 eV ¼ 1:6 � 10�19 JÞ.


(Problems 13.14, 13.15)


The Potential Step


The standing wave system of the infinite potential well where the wave function


 nðxÞ
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is finite in the region VðxÞ ¼ 0 but zero at all other points is unique in the formal


correspondence it presents between classical and quantum mechanical results. The


quantum effects become evident when we consider the general case of the potential step of


finite height V in Figure 13.5 which is an idealized form of the very steep potential gradient


of a conservative force


FðxÞ ¼ � @V


@x


Such a potential step would be seen by a free electron near the surface of a metal.


It is necessary to consider separately the two cases where the total particle energy E is (a)


less than the potential energy V, and (b) greater than V, where


E ¼ p2


2m
þ VðxÞ


(a) E < V


When E is less than V, the region x > 0 of Figure 13.5 is forbidden to the particle by


classical mechanics for the kinetic energy


p2


2m


would then have a negative value.


In finding the complete solution for  ðxÞ for the potential step we must solve


Schrödinger’s equation for the separate regions of Figure 13.5, x < 0 (region 1) and x > 0


(region 2).


V (x ) = 0


V (x ) = V


x = 0


E < V


E > V


y 1(x ) = A 


y 1(x )
y 2(x )


y 2(x ) =


(1) (2)


eik 1x
A e–α x


e–ik xik 1 + a
ik 1 – a


2ik 1


ik 1 – a+


2m  (V – E )a 
2 =


h 
2


k1 
2 = 2m E / h 


2


Figure 13.5 Wave functions  1ðxÞ and  2ðxÞ for a particle mass m, energy E < V at a potential
step VðxÞ ¼ V
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In region 1, VðxÞ ¼ 0 and we have


@ 2 1ðxÞ
@x2


þ 2mE


�h2
 1ðxÞ ¼ 0


with a solution


 1ðxÞ ¼ A eik 1x þ B e�ik 1x


where


k 2
1 ¼ 2mE


�h2


The term A eik 1x (with the sign convention of this chapter) is the wave representation of an


incident particle moving to the right, and B e�ik 1x represents a reflected particle moving to


the left.


In region 2, VðxÞ ¼ V and Schrödinger’s equation becomes


@ 2 2ðxÞ
@x2


þ 2mðE � VÞ
�h2


 2ðxÞ ¼ 0


or


@ 2 2ðxÞ
@x2


� �2 2ðxÞ ¼ 0


where


�2 ¼ 2mðV � EÞ
�h2


This equation has the solution


 2ðxÞ ¼ C e��x þ D e�x


Now the probability of finding the particle in region 2 where it is classically forbidden


depends on the square of the wave function amplitude j 2ðxÞj2
with the condition that for


any wave function to be normalized


�
i.e. for


ð
j 2ðxÞj2


dx ¼ 1


�


the wave function  2ðxÞ ! 0 as x ! 1.


This forbids the second term D e�x which increases with x but still leaves


 2ðxÞ ¼ C e��x


428 Wave Mechanics







to give a finite probability of finding the particle beyond the potential step, a probability


which decreases exponentially with distance. This is a profound departure from classical


behaviour.


At the boundary x ¼ 0,  ðxÞ must be finite to give a finite probability of finding the


particle there, but there is a finite discontinuity in VðxÞ. In these circumstances


Schrödinger’s equation asserts that the second derivative


@ 2 ðxÞ
@x2


at x ¼ 0 is finite, which means that both  ðxÞ and ð@ ðxÞ=@xÞ are continuous at x ¼ 0.


These are the boundary conditions which allow the separate solutions


 1ðxÞ and  2ðxÞ


for the wave function, to be matched across the boundary of the two regions.


The continuity of  ðxÞ at x ¼ 0 gives  1ðxÞ ¼  2ðxÞ or A þ B ¼ C whilst


@ 1ðxÞ
@x


¼ @ 2ðxÞ
@x


at x ¼ 0 gives


ik1ðA � BÞ ¼ ��C ¼ ��ðA þ BÞ


Thus


B ¼ ik1 þ �


ik1 � �


� �
A


and


C ¼ 2ik1


ik1 � �
A


The wave functions for the separate regions then become


 1ðxÞ ¼ A eik 1x þ ik1 þ �


ik1 � �
e�ik 1x


� �


and


 2ðxÞ ¼
2ik1


ik1 � �
A e��x


and these are shown in Figure 13.5. Note particularly that the intensity of the incident part


of the wave function


j 1ðxÞj2 ¼ jAj2
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whilst the reflected intensity is


jBj2 ¼ ik1 þ �


ik1 � �
A


����
����


2


¼ jAj2


Thus, for any energy E < V we have total reflection as in the classical case, even for those


particles which penetrate the classically forbidden region x > 0 where  2ðxÞ is finite.


In region 2 the probability of finding the particle is


PðxÞ ¼ j 2ðxÞj2 ¼ jC e��xj2


¼ 2ik1


ik1 � �
A e��x


����
����


2


¼ 4k 2
1


k 2
1 þ �2


A2 e�2�x


Since the exponential coefficient � depends on VðxÞ the greater the value VðxÞ the faster


the wave function  2ðxÞ goes to zero in region 2 for a given total energy E < V.


When VðxÞ ! 1, as in the case of the infinite potential well,  2ðxÞ becomes zero, as we


have seen; and there is no penetration into the classically forbidden region.


Several important physical phenomena may be explained on the assumption that a


particle with E < V meeting a potential step of finite height V and finite width b has a wave


function  2ðxÞ which is still finite at x ¼ b, making it possible for the particle to tunnel


through the potential barrier (Figure 13.6). The probability that the particle will penetrate


the barrier to x ¼ b is given by


PðxÞ ¼ j 2ðxÞj2 / e�2�x


and beyond this barrier the particle will propagate in region 3 with a wave function  3ðxÞ
of reduced amplitude. The boundary conditions must then be applied at x ¼ b to match


 2ðxÞ to  3ðxÞ.


y 2(x )


y 3(x )


y 1(x )


Region 1


b


Region 3


Figure 13.6 Narrow potential barrier of width b penetrated by a particle represented by  1ðxÞ
leaving a finite amplitude  3ðxÞ as a measure of the reduced probability of finding the particle in
region 3
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This quantum ‘tunnel effect’ is the basis of the explanation of the radioactive decay of


the nucleus. In addition the potential step seen by a free electron near the surface of a metal


may be distorted, as shown in Figure 13.7, by the application of an external electric field, to


form a barrier of finite width. The most energetic electrons near the surface of the metal can


leak through the barrier in a process known as field electron emission.


Another example results from the two possible positions of the single nitrogen atom with


respect to the three hydrogen atoms in the ammonia molecule NH3. These positions are


shown as N and N 0 in Figure 13.8 together with the potential barrier presented to the


nitrogen atom as it moves to and fro between N and N 0. This penetration occurs at a


frequency of 2:3786 � 1010 Hz for the ground state of NH3 and its high definition is used


as an atomic clock to fix standards of time.


Metal surface
potential


Tunnelling
of energetic
electron


V  = V 0 – Ex


V 0


x = 0


Figure 13.7 Application of an electric field E to the surface of a metal at potential V0 reduces the
potential to V ¼ V 0 � E x forming a barrier of finite width which may be penetrated by an energetic
electron near the metal surface


H


N


N′


N


H


H


H H


H
HH


N′


H


V for
N motion


Potential
barrier


Figure 13.8 The two possible configurations N and N 0 of the nitrogen atom with respect to the
triangular hydrogen base in the ammonia molecule NH3 and the finite potential barrier penetrated by
the nitrogen atom at a frequency of >1010 Hz in the NH3 ground state
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(Problem 13.16)
(b) E > V


In the region x < 0 in Figure 13.5 VðxÞ ¼ 0 and Schrödinger’s equation is


@ 2 1ðxÞ
@x2


þ 2mE


�h2
 1ðxÞ ¼ 0


or


@ 2 1


@x2
þ k 2


1 1 ¼ 0


with


k 2
1 ¼ 2mE


�h2


having a solution


 1ðxÞ ¼ A eik 1x þ B e�ik 1x


with both incident and reflected terms.


The momentum of the particle is p1 where p2
1=2m ¼ E.


In the region x > 0, VðxÞ ¼ V and Schrödinger’s equation is


@ 2 2ðxÞ
@x2


þ 2mðE � VÞ
�h2


 2ðxÞ ¼ 0


or


@ 2 2


@x2
þ k 2


2 2 ¼ 0


where


k 2
2 ¼ 2mðE � VÞ


�h2


and the particle momentum p2 is given by p2
2=2m ¼ ðE � VÞ.


In the wave function solution for this region we consider only the right-going or


transmitted term since there is nothing beyond x ¼ 0 to cause a reflection, so


 2ðxÞ ¼ C eik 2x


Now the wave number k is related to the de Broglie wavelength of the particle and we


see that k changes when the potential V changes; that is, when the particle experiences a
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change in the force acting on it. Such a particle therefore reacts to a changing potential as


light reacts to changing refractive index. As the potential V increases for E > V the


momentum p and wave number kðp ¼ �hkÞ decrease and the wavelength � increases.


At x ¼ 0 the conditions for continuity give


 1ðxÞ ¼  2ðxÞ


or


A þ B ¼ C


and


@ 1ðxÞ
@x


¼ @ 2ðxÞ
@x


or


k1ðA � BÞ ¼ k2C


These two equations give


B ¼ ðk1 � k2Þ
ðk1 þ k2Þ


A


and


C ¼ 2k1


k1 þ k2


A


Since B is not zero, some reflection takes place at x ¼ 0 even though the energy E > V.


This is clearly not classical behaviour. If many particles form an incident beam at x ¼ 0


and each particle has velocity


v 1 ¼ p1


m
¼ �hk1


m


then the velocity of transmitted particles will be


v 2 ¼ p2


m
¼ �hk2


m


The incident flux of particles; that is, the number crossing unit area per unit time, may be


seen as the product of the velocity and the intensity; that is


v 1jAj2
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The reflected flux is


v 1jBj2


and the transmitted flux is


v 2 jC j2


Thus, the reflection coefficient, the ratio of reflected to incident flux is


R ¼ v 1 jB j2


v 1 jA j2
¼ ðk1 � k2Þ2


ðk1 þ k2Þ2


and the transmission coefficient, the ratio of transmitted to incident flux is


T ¼ v 2 jC j2


v 1 jA j2
¼ k2


k1


ð2k1Þ2


ðk1 þ k2Þ2
¼ 4k1k2


ðk1 þ k2Þ2


results which are similar to those for our classical waves in earlier chapters.


Note that R þ T ¼ 1 showing that the number of particles is conserved.


We have chosen here to apply R and T to a number of particles forming a beam. These


coefficients, when applied to identical particles forming the beam, measure the average


probability that an individual particle will be reflected or transmitted.


(Problem 13.17)


The Square Potential Well


Let us consider a particle with energy E < V moving in the square potential well of width a


in Figure 13.9. Within the well the potential is zero, and the value Vof the height of the well


V (x) = V


V (x) = 0


E < V


x = 0 x = a


ψ
3(x) ψ


1(x) ψ
2(x)


3 1 2


Figure 13.9 A particle with energy E < VðV ¼ the finite height of a square potential well of width
a) may take only the energy values E satisfying the equation


tan a


ffiffiffiffiffiffiffiffiffi
2mE


�h2


r
¼ 2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV � EÞ


p
2E � V


The wave functions in the three regions are matched at the boundaries x ¼ 0 and x ¼ a by the
conditions that  ðxÞ and @ ðxÞ=@x are continuous
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is finite. This potential approximates that of a finite range force which has no influence


beyond a limited distance. Outside the range of the force the potential may be considered


constant. From our discussion of the infinitely deep potential well ðV ¼ 1Þ and of the


potential step we can expect our wave function representation to have the form of an


integral number of de Broglie half wavelengths within the well, plus an exponentially


decaying penetration into the wall on either side.


Writing Schrödinger’s equation for each of the three regions, we have for region


1ð0 < x� aÞ


@ 2 1ðxÞ
@x2


þ 2mE


�h2
 1ðxÞ ¼ 0


with a solution, for k 2
1 ¼ 2mE=�h2 of


 1ðxÞ ¼ A eik 1x þ B e�ik 1x


¼ Aðcos k1x þ i sin k1xÞ þ Bðcos k1x � i sin k1xÞ
¼ A1 cos k1x þ B1 sin k1x


where A1 ¼ A þ B and B1 ¼ iðA � BÞ.
In region 2ðx� aÞ


@ 2 2ðxÞ
@x2


þ 2mðE � VÞ
�h2


 2ðxÞ ¼ 0


has the solution


 2ðxÞ ¼ A2 e�x þ B2 e��x


where


�2 ¼ 2m


�h2
ðV � EÞ


In region 3, ðx < 0Þ


@ 2 3ðxÞ
@x2


þ 2mðE � VÞ
�h2


 3ðxÞ ¼ 0


has the solution


 3ðxÞ ¼ A3 e�x þ B3 e��x


For  ðxÞ to remain finite as x ! �1 (normalization condition) A2 and B3 must be zero,


and the boundary conditions  ðxÞ and @ ðxÞ=@x continuous, must be satisfied at x ¼ 0 and


x ¼ a.
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At x ¼ 0,


 1ðxÞ ¼  3ðxÞ and
@ 1ðxÞ
@x


¼ @ 3ðxÞ
@x


give


A1 ¼ A3 ð13:1Þ


and


k1B1 ¼ �A3 ð13:2Þ


whilst at x ¼ a


 1ðxÞ ¼  2ðxÞ and
@ 1ðxÞ
@x


¼ @ 2ðxÞ
@x


give


A1 cos k1a þ B1 sin k1a ¼ B2 e��a ð13:3Þ


and


�k1A1 sin k1a þ k1B1 cos k1a ¼ ��B2 e��a ð13:4Þ


In order to satisfy equations (13.1), (13.2), (13.3) and (13.4) some conditions must be


imposed on k and �; that is, on the value of E, so only certain values of E are allowed.


Equations (13.1) and (13.2) give


A1


B1


¼ k1


�


and this equation with equations (13.3) and (13.4) yields


tan k1a ¼ 2k1�


k 2
1 � �2


or


tan a


ffiffiffiffiffiffiffiffiffi
2mE


�h2


r
¼ 2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV � EÞ


p
2E � V


Only those values of E which satisfy this relation are allowed energy states, but these


values must be found by numerical or graphical methods.


The wave functions for the first three allowed energy values are shown in Figure 13.10


and their general behaviour may be clarified by considering Schrödinger’s equation in the


form


@ 2 


@x2


.
 ¼ �ðþve constantÞðE � VÞ
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Now @ 2 =@x2 is the rate of change of the slope; that is, the curvature of the wave function


and when E > V both sides of the equation are negative and the  curve must everywhere


keep its concave side towards the x axis as it always does, for example, in sine and cosine


curves. The curvature increases with E so we shall expect more de Broglie half


wavelengths in the higher energy levels. This is consistent with the argument that an


increase in E increases the wave number k and reduces the de Broglie wavelength �.


In the lowest energy level the  curve is always without a node, the next level always has


one node, the third two nodes, etc. but the zeros will not be quite equally spaced and the  
amplitude will not be uniform across the well. In particular it will increase near the


potential walls as the particle is slowed down to give a higher probability of the particle


being found there. Where E < V the ratio


@ 2 =@x2


 


(x) for E3ψ


(x) for E2ψ


(x) for E1ψ


x = ax = 0


Figure 13.10 Wave functions for a particle in a square potential well with the lowest three allowed
energies E 1, E 2, E 3. Note the exponential decay of  ðxÞ outside the box
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will be positive and the  curve must keep its convex side towards the axis as in


exponential curves. The classical boundary E ¼ V must always mark the division where


the character of the  curve changes from one form to the other and the two parts of the


curve will only match for certain values of E.


The Harmonic Oscillator


As a final example to illustrate the fitting of  curves into a potential well we shall consider


the potential curve V ¼ 1
2


sx2 of the harmonic oscillator in Figure 13.11. The calculation of


the  curves is too complicated for this chapter but their essential features confirm what we


may expect from our earlier examples. Moreover, by purely classical arguments we shall


obtain a very good approximation to the wave mechanical results.


In 1901 Planck had postulated that the energy of such an oscillator could have the values


E ¼ nh� where n was an integer and � was the frequency. Schrödinger was able to derive


this result in 1926 but one essential difference arises from the Uncertainty Principle which


requires a minimum energy level or zero point energy of 1
2


h�.


For a classical oscillator the minimum energy E ¼ 0, point 0 in Figure 13.11 gives the


precise and simultaneous values x ¼ 0 and p ¼ 0; that is, a zero oscillation. The


Uncertainty Principle forbids this. If a0 is the smallest amplitude of the oscillator


compatible with the Uncertainty Principle, then


a0 � 1
2
�x


2 a


V


E


E4 =
9
2


hν


E3 =
7
2


hν


E2 =
5
2


hν


E1 =
3
2


hν


E0 =
1
2


hν


0
x


Figure 13.11 Potential energy curve V of a harmonic oscillator with allowed energy levels
En ¼ ðn þ 1


2Þh� . The energy E (with oscillator amplitude a) is shown in the text to define an average
value of the de Broglie wavelength � ¼ h=ð4


3 mEÞ 1=2
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If p0 is the maximum momentum of the oscillator with amplitude a0 it may be either in the


positive or negative direction so


p0 � 1
2
�p


The energy of a classical oscillator is given by


E ¼ 1
2


m!2a2
0 ¼ 1


2
!ða0Þðm!a0Þ ¼ 1


2
!a0p0


� 1
8
!�x�p � 1


8
h! � 1


2
�h! ¼ 1


2
h�


All other energy levels will therefore take integral steps of h� above this zero point energy.


Let us consider the energy level of the oscillator which has an amplitude a so that


E ¼ p2


2m
þ V ¼ p2


2m
þ 1


2
sx2 ¼ 1


2
sa2 ¼ 1


2
m!2a2


so that


2a ¼ 2


!


ffiffiffiffiffiffi
2E


m


r


The value of the kinetic energy of the oscillator averaged over the distance 2a between �a


may be writtenÐ a


�a
p2=2m dxÐ a


�a
dx


¼ 1


2a


ð a


�a


E � 1


2
m!2x2


� �
dx ¼ E � 1


6
m!2a2 ¼ 2


3
E


because


E ¼ 1
2


m!2a2


Thus, the average value of the kinetic energy


p2


2m
¼ 2


3
E


giving


p ¼ h


�
¼


ffiffiffiffiffiffiffiffiffi
4mE


3


r


This gives an average value for the de Broglie wavelength of


� ¼ hffiffiffiffiffiffiffiffiffi
4mE


3


r


The Harmonic Oscillator 439







and we expect n half wavelengths to fit into the length 2a at energy E where


2a ¼ 2


!


ffiffiffiffiffiffi
2E


m


r


Thus


n
�


2
¼ nh


2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mE=3


p ¼ 2


!


ffiffiffiffiffiffi
2E


m


r


Writing ! ¼ 2	� we have


E ¼ 	


4


ffiffiffi
3


2


r
nh� ¼ 0:96 nh�


which is a fairly close approximation to nh�. The correct result, however, must take into


account the zero point energy of 1
2


h� and the energy levels are given by


E ¼ ðn þ 1
2
Þh�; n ¼ 0; 1; 2; 3; etc:


The  curves for the first four energy levels are plotted in Figure 13.12 together with those


for j j2
.


We see that whilst a classical oscillator may never exceed its maximum amplitude a


particle obeying a wave mechanical description has a finite probability of being found


beyond this limit.


ψ2


ψ1


ψ0


ψ3


0 0


ψ3
2


ψ2
2


ψ1
2


ψ0
2


E3 =
7
2


hν


E2 =
5
2


hν


E1 =
3
2


hν


E0 =


E3 


E2 


E1 


E0 
1
2


hν


Figure 13.12 Wave functions  ðxÞ and probability densities j ðxÞj 2 for the first four energy levels
of the harmonic oscillator
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(Problems 13.18, 13.19)


Electron Waves in a Solid


Bloch Functions and the Kronig--Penney Model


When electrons move through a solid, e.g. a metal, they meet a series of potential barriers


generated by the atoms or ions located at the centre of the valleys between successive


barriers. Figure 13.13 shows such a one-dimensional lattice array of ions. The electron


wave function is derived via Bloch functions and the electron behaviour is demonstrated


using the Kronig–Penney Model which replaces Figure 13.13 in the first instance with a


periodic series of potential wells of finite depth as shown in Figure 13.14. An exact but


unwieldy solution can be found for the situation described by Figure 13.14, but Kronig and


Penney, by deepening the wells and reducing their separation, were able to show how the


electrons behaved and to demonstrate the restrictions imposed on their motion.


L


> l <


+ + + + + +


Figure 13.13 A one-dimensonal periodic array of poterntial barriers formed by ions or atoms
located along a crystal lattice


b


a x
l


V


V0


Figure 13.14 A series of finite potential wells used by Kronig and Penney as a first approximation
of Figure 13.13
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In Figure 13.14 the space between the potential wells is a, the well thickness is b and its


height is V0. The problem is similar to that described on p. 435 where the total energy of


the electron is E � V0 so the wave equation is


@2 


@x2
þ 2m


�h2
ðE � V0Þ ¼ 0


Now, VðxÞ is periodic so Vx ¼ Vðx þ lÞ where l ¼ a þ b. Evidently, since the probability


of finding an electron at x or at x þ l is the same, we have


j ðxÞj2 ¼ j ðx þ lÞj2


Hence, we may write  ðx þ lÞ ¼  ðxÞ where � ¼ jj2 ¼ 1 (� is the complex conjugate


of ).


At this stage we could write  ¼ eikx, but this does not define k well enough to satisfy the


boundary conditions at each end of the crystal. For periodic functions the conventional


method to meet the boundary conditions is to form a ring of circumference of length


L ¼ Nl where L is the length of the crystal and N is the number of atoms along its length.


Note that in Figure 13.13 the potential barriers at each end of the crystal add l to its length.


Proceeding along the crystal (or around the ring) we have


 ðx þ 2lÞ ¼  ðx þ l þ lÞ ¼  ðx þ lÞ ¼ 2ð Þ


or for r integral steps


 ðx þ rlÞ ¼ r ðxÞ r ¼ ð0; 1; 2; 3 . . .N � 1Þ


Now r ¼ 0 and r ¼ N are identical positions (one complete circuit of the ring), so


 ðx þ NlÞ ¼ N ðxÞ ¼  ðxÞ


that is


N ¼ 1


We may now write


 ¼ ei2	r=N ðr ¼ 0; 1; 2; 3 . . .Þ


so that


 ðx þ lÞ ¼  ðxÞ ¼ e i2	r=N ðxÞ


The Bloch function �kðxÞ is defined by


 ðxÞ ¼ �kðxÞeikx
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where


�kðxÞ ¼ �kðx þ lÞ


Here, k ¼ 2	r=lN and �kðxÞ has the periodicity of the potential. Since r changes by units as


we move along the crystal each step of r=N (for N large) is so small that k ¼ 2	r=lN may


be considered as varying continuously.


The Bloch functions satisfy all conditions because


 ðx þ lÞ ¼ eikðxþlÞ�kðx þ lÞ ¼ eikleikx�kðxÞ ¼ ei2	r
N  ðxÞ ¼  ðxÞ


The wave equations of Figure 13.14 are


@2 1


@x2
þ �2 1 ¼ 0 0 < x < a ð13:5Þ


and


@2 2


@x2
� �2 2 ¼ 0 � b < x < 0 ð13:6Þ


where


�2 ¼ 2mE


�h2
and �2 ¼ 2m


�h2
ðV0 � EÞ


with


VðxÞ ¼ Vðx þ lÞ and l ¼ a þ b


The Bloch function �kðxÞ ¼ �kðx þ lÞ where l ¼ a þ b, so for x ¼ �b we have


�xðaÞ ¼ �kð�bÞ, which is evident from Figure 13.14.


Earlier examples in this chapter have shown that the boundary conditions require  ðxÞ
and its first derivative to be continuous across any potential change.


Applying  ðxÞ ¼ �kðxÞeikx to equations (13.5) and (13.6), we have


�1ðxÞ ¼ Aeið��kÞx þ Be�ið�þkÞx 0 < x < a


�2ðxÞ ¼ Ceð��ikÞx þ De�ð�þikÞx � b < x < 0


so that the boundary conditions are


�1ð0Þ ¼ �2ð0Þ with
@�1


@x


� �
x¼0


¼ @�2


@x


� �
x¼0


and


�1ðaÞ ¼ �2ð�bÞ with
@�1


@x


� �
x¼a


¼ @�2


@x


� �
x¼�b
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which give four homogenous equations.


Remember that


�ðxÞ ¼ �ðx þ lÞ


As with the rectangular well on p. 435 these boundary conditions determine the permitted


values of E (via a and b). Here, the boundary conditions require either


A ¼ B ¼ C ¼ D ¼ 0 or the determinant of their coefficients to be zero. Equating the


determinant of the coefficients to zero gives the unwieldy expression


�2 � �2


2��
sin�a sinh�b þ cos�a cosh�b ¼ cos kða þ bÞ ð13:7Þ


Kronig and Penney simplified this equation by allowing V0 to tend to infinity as b


approached zero in such a way that V0b remained constant. This has two important


implications. First, the potential wells become very deep so that Figure 13.14 approximates


Figure 13.13. Second, their separation is narrowed so that l ¼ a þ b � a and we may


rewrite equation(13.7) as


V0b
ma


�h2


� �
sin�a


�a
þ cos�a ¼ cos ka ð13:8Þ


The values of � ¼ ð2mE=�h2Þ
1
2 which satisfy this equation determine the permitted energy


values and wave functions of the electrons.


Note that when V0 ! 1 equation (13.8) requires sin�a ¼ 0 to remain valid, leaving


� ¼ � n	


a
ðn ¼ 1; 2; 3 . . .Þ


or


E ¼ 	2�h2n2


2ma2


which are the quantized energies of the tightly bound electron in the infinitely deep


potential of p. 420.


At the other extreme when V0 ¼ 0 equation (13.8) gives


� ¼ k ¼ 2mE


�h2


� �1
2


which allows E to take any positive value. This gives a free particle solution to the wave


equation (graphed as the dotted parabola in Figure 13.16).


Between these two extreme values of V0 the permitted values of the energy E are


displayed on the graph in Figure 13.15 where the left-hand side of equation (13.8) is plotted


against �a where �a is written w and V0bðma
�h2 Þ is written K.
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Now the limits of cos ka in equation (13.8) are �1 and these determine the allowed


values of w ¼ �a indicated by the heavy horizontal line on the w or �a axis. These in turn


denote the permitted ranges or bands of energy values which the electron may take. The


bands increase with w ¼ �a and between the bands are gaps where electron energies are


forbidden. The limits of each energy band are defined by cos ka ¼ �1 that is


k ¼ � n	


a
ðn ¼ 1; 2; 3; . . .Þ


and the regions in k space defining the energy bands are known as Brillouin zones. The


band for n ¼ 1 is called the first Brillouin zone, n ¼ 2 is the second Brillouin zone and so


on. Figure 13.15 can be displayed as the energy E versus k graph in Figure 13.16 where the


dotted parabola defines the free electron energy E ¼ �h2


2m
k2 and the heavy lines at the k


boundaries denote the permitted electron energies in a given band. The cosine curves


joining the zone boundaries are justified by Figure 5.15, which shows that no new


information is gained by extending the k range beyond �	=a � k � 	=a. This limited


range of k values defines the reduced zone scheme.


W = αa3π2ππ


Cos ka


−1


+1


0


Cos ka


K
Sin W


W
+ Cos W,


Figure 13.15 Allowed electron energy values are denoted by heavy horizontal lines which define
the Brillouin zones. These occur when the left-hand side of equation (13.8) has values between � 1.
The curve is symmetric about the axis w ¼ 0.
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The number of energy states (excluding spin) in each zone is determined by


k ¼ 2	r


lN
¼ 2	r


aN
ðr ¼ 0; 1; 2; 3 . . .N � 1Þ


for each k value represents an allowed energy state. Each value of r gives a different value


of k; there are N such values. Hence, in this range


�	


a
� k � 	


a
i:e:


2	


a
¼ 2	r


Na
where a � l


the number of energy levels is equal to the number of atoms.


As a þ b ¼ l ! 1 each band contracts to a single level which is N-fold degenerate


since the electron can be bound to any one of the atoms. For finite values of l this


degeneracy is removed and each discrete atomic level spreads into a band of N levels.


k
3π
a


− 3π
a


2π
a


− 2π
a


π
a


0− π
a


V1


V3


V2


B4


B3


B2


B1


Figure 13.16 Figure 13.15 displayed as allowed electron energies versus k. The dotted parabola
defines the free electron energy E ¼ �h2k2=2m and the allowed energy bands are the Brillouin zones
Bi. V1; V2; V3 are the energy gaps between the zones. The cosine curves joining the zone boundaries
are justified by Figure 5.15, i.e. all relevant information is contained in the region �	


a � k � 	
a
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Only free electrons will escape interaction with the ions in the crystal lattice; almost free


electrons will experience weak coupling to the lattice. Coupling which is strong enough to


reflect electron waves may be seen in terms of Bragg reflection, Figure 13.17. Here, waves


reflected by successive planes in a crystal which are separated by a distance a reinforce to


give maxima on reflection when 2a sin � ¼ n�.


When � ¼ 	=2 and the coupling is strong enough the electron waves will be reflected


from successive ions, Figure 13.18, giving a path difference of 2a. Reflection maxima


occur for


2a ¼ �n� ¼ �n
2	


k
; i:e: k ¼ � n	


a


Thus, Bragg reflections define the Brillouin zone boundaries.


θ θ


kk ′


a


Figure 13.17 Elastic Bragg reflection occurs when electron waves are scattered by atoms in planes
separated by a distance a. Principal maxima are formed when 2a sin ¼ n�


1


1′


2′


2


a a a a


Figure 13.18 When � ¼ 	=2 in Figure 13.17 Bragg scattering by electron--ion interactions gives
principal maxima when electron waves are reflected from ions separated by multiples of a. The
condition 2a ¼ n� defines the Brillouin zone boundaries for n ¼ 1; 2; 3; etc.
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Wave functions of electrons can be represented by travelling waves in both directions,


i.e. by e�ikx and for k ¼ � n	=a standing waves will be formed by the sum or difference of,


e.g.


ei	x=a and e�i	x=a


The sum of these terms creates


 even ¼ cos
	x


a


and their difference gives


 odd ¼ sin
	x


a


The energies associated with these two wave functions will differ when they interact with


the ions.  even ¼ cos	x=a has anti-nodes (maxima) at the site of each ion so the electron–


ion interaction is attractive and the energy corresponding to  even is lowered.


 odd ¼ sin	x=a has its anti-node midway between ion sites where the potential is


repulsive, Figure 13.19. The calculation of these energy shifts requires knowledge of the


effective potential, but it can be shown that for  even the energy change at a given Vn in


Figure 13.16, where Vn is the energy gap between bands, is �E ¼ � 1
2


Vn and for  odd the


energy change is �E ¼ 1
2


Vn (see Problem 13.21). Note that the band widths and gaps


increase with n.


The band structure may also be demonstrated by considering the effect of tunnelling.


Two widely separated equivalent potential wells may each contain a single electron


occupying identical energy levels. When the potential well separation becomes small


enough for the tunnelling of Figure 13.6 to be possible this symmetry is destroyed because


the wave function of an electron spreads right across both wells and their separating


potential barrier, Figure 13.20. There is a finite probability of finding an electron at any


ψ


Ψeven


Ψodd


a 2a 3a x


Figure 13.19 The wave function c (even) has an anti-node at an ion (atom) site. The anti-node for
c (odd) is located midway between sites. This governs the energy of interaction, which is different
for the two c values
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point x of its wave function  ðxÞ so the two electrons cannot occupy the same energy level


and the single state splits into two. The lowest lying energy levels split into a narrow band


of very closely spaced states since the barrier to tunnelling is very large for electrons in


these levels. Higher energy levels have a wider spread and it is even possible for bands to


overlap. The band structure helps to explain the difference between electrical conductors


and insulators.


Once an energy level is occupied by an electron it cannot accept another electron.


However, in a metal only the lower energy levels in a band or Brillouin zone are occupied


and an applied electric field can accelerate electrons which move to occupy higher


available energy states within the band. Insulators have completely filled energy bands so


the electrons cannot move under the influence of an electric field – there are no empty


neighbouring states.


−a −b b a


Ψ(x )


Ψ1


Ψ0


Figure 13.20 When an electron can tunnel between two potential wells (a, b) and � (a, b) it cannot
exist in a single energy state. The higher of the two resulting energy states has a greater curvature
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However, a very strong electric field can cause an electron to jump from the top of a band


across a gap to occupy an empty level immediately above the gap, so the insulator breaks


down. A spark can jump across an air gap between two terminals; lightning is such a spark


on a much larger scale. A semiconductor is basically an insulator with a very narrow


forbidden gap where even a small energy change will switch the insulator into a conductor.


Phonons


Pages 135 and 162 showed that the elastic field in a crystal could sustain transverse and


longitudinal modes of vibration along a chain of atoms acting as a series of coupled


oscillators. In a normal mode of angular frequency !i every atom performed simple


harmonic oscillations of !i. On p. 440 we saw that the energy of such oscillations at atomic


and sub-atomic levels was quantized with values of ðn þ 1=2Þ�h!.


The concept of photons as quanta of energy �h! associated with an electromagnetic field


allows the analogy of phonons as quanta of energy associated with the elastic field. In a


normal mode of angular frequency !i the energy of a phonon is �h!i so phonons can be seen


as exciting a mode to an energy state ðn þ 1
2
Þ�h!i. When n ¼ 0 the mode !i is left with the


zero-point energy 1
2
�h!i. A more detailed calculation of Debye’s theory of specific heats


(page 253) takes account of this quantization.


Normal modes are plane waves extending throughout the crystal and phonons are not


localized particles. The uncertainty principle prevents an exact determination of a phonon


position and it exists as a localized wave packet of combined modes with a small spread of


frequency and wavelength and a group velocity d!=k. The number of phonons, like that of


photons, is not conserved. They are created and absorbed by collisions and, like photons,


they obey Bose–Einstein statistics (appendix 1). However, unlike photons, they exist only


within the crystal. They contribute to the crystal momentum but do not carry momentum.


This is evident from Figure 5.15 where a lattice vibration has a wave number


k ¼ k � m	
a


ðm ¼ 1; 2; 3; . . .Þ so �hk has no precise meaning. Indeed, when the mode


oscillations are purely harmonic the equilibrium position is zero so phonon momentum is


zero.


Phonon–phonon collisions are usually three-phonon processes in which both transverse


and longitudinal waves are involved. They are characterized by energy conservation


�h!1 ¼ �h!2 þ �h!3


and by phonon wave vector conservation


q1 ¼ q2 þ q3


A phonon of wave vector q1 can separate into two phonons with wave vectors q2 and q3.


Alternatively, q2 can absorb q3 to form q1. Phonon–phonon collisions play a role in the


thermal conductivity of a crystal; neutron interactions with the crystal lattice also involve


the concept of phonons.


When particles, as waves, interact with crystal structures they create diffraction patterns


when the particle wavelength is of the order of atomic separation within the crystal,
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typically � 2 � 10�10 m. The waves of X-rays striking a crystal create principal maxima


on reflection to satisfy Braggs Law (p. 447) when the path difference


2a sin � ¼ n�


where a is the separation between the reflecting (diffracting) planes. If k is normal to the


particle wave fronts before striking the crystal and k0 is normal to the wave front leaving


the crystal the condition jkj ¼ jk0j defines the scattering as elastic, so Bragg scattering is


elastic. Knowing the plane separation of a nickel crystal, determined by X-rays, Davisson


and Germer were able to find the wavelength of electrons by Bragg elastic scattering (see


Problem 13.20).


Neutrons with � � 2 � 10�10 m have been used in non-elastic scattering experiments


where jkj 6¼ jk0j to probe the structure of crystals, that is, the atomic arrangements and


separation. Where X-rays interact chiefly with electrons surrounding the nucleus of an


atom, uncharged neutrons interact much more strongly with its nucleus; lattice vibrations


are set up so phonons play a role in the scattering.


Non-elastic scattering may be seen in terms of Figure 13.21 where waves in the wave


front normal to k are scattered by atoms 1 and 2 in a row where the atomic separation is a.


The phase lag of the wave incident on atom 2 is 2	
� a sin � with respect to that striking atom


1, but after scattering it leads the wave scattered by atom 1 by a phase 2	
�0 a sin�. A


diffraction maximum occurs when the phase difference


2	


�
a sin �� 2	


�0
a sin� ¼ ka sin �� k0a sin� ¼ l2	 ðl ¼ 1; 2; 3; . . .Þ


i.e.


aðk � k0Þ ¼ l2	


or


k � k0 ¼ l
2	


a


k k ′


a
21 a1 2


θ φ


Figure 13.21 When electrons are scattered from atoms separation a, in the same plane, the
scattering may be inelastic, i.e. jkj 6¼ jk0j. Here, the electron of wave number k ¼ 2	=� strikes atom
1 ahead in phase of that striking atom 2 by 2	=� a sin �, but after scattering it lags that from atom 2
by a phase difference 2	


�0 a sin�. Note that l need not ¼l0
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Note that k � k0 is a vector in diffraction space and �0 need not equal �. This is true for


every row of lattice points in the x direction.


The expression l2	=a represents a series of planes in k space with a separation 2	=a.


Crystal planes in a second dimension with separation b would form another series of planes


m 2	
b
ðm ¼ 1; 2; 3; . . .Þ with separation 2	


b
in k space having lines of intersection with the


series l. A set of crystal planes in a third dimension with separation c would form a final set


of planes n 2	
c
ðn ¼ 1; 2; 3; . . .Þ with separation 2	=c in k space. These three sets of planes


would meet in points ðl;m; nÞ in k space to form the reciprocal lattice. In three dimensions


the diffracted vector k � k0 would end on a reciprocal lattice point l;m; n. There is no


requirement for the directions a; b and c in the crystal to be mutually perpendicular, but a


symmetry exists between the crystal lattice and its reciprocal in that planes in the one are


perpendicular to rows of points in the other and the plane spacing in one is 2	 times the


reciprocal of the point spacing in the other.


When neutrons are diffracted from a crystal lattice in which a phonon of wave vector q
and frequency ! is already excited, more than one diffraction maximum can appear. This


first maximum will result from Bragg elastic scattering, i.e. jkj ¼ jk0j.
A second maximum occurs in a vector direction


g ¼ k � k0 þ q


or


k0 ¼ k þ q � g


This suggests that a neutron of wave vector k has absorbed a phonon of wave vector q to


become a neutron of wave vector k0. In the scattering, because the neutron is initially


outside the crystal, the crystal plus the phonon receives a momentum


�hðk � k0Þ ¼ �hðg � qÞ


Conventionally, the momentum �hg is associated with the whole lattice while �hq (associated


with the absorbed phonon) is known as the crystal or quasi-momentum of the phonon


because it acts as a momentum when absorbed by the neutron.


In pure phonon–phonon collisions two processes may occur. The three phonons involved


may begin and end in the same Brillouin Zone. this is called a normal process. In some


cases, however, the third phonon may finish outside the Brillouin zone. This is known as


the Umklapp process. This occurs when a phonon is Bragg reflected (at the edge of a


Brillouin zone) at the same time as it absorbs another phonon. We know, however, that a


phonon of wave vector q is identical with a phonon of wave vector q � 2	
a


, so the third


phonon may be considered as remaining within the Brillouin zone. Umklapp processes play


a role in the thermal conductivity of a crystal in the following way.


When the crystal lattice vibrations are purely harmonic the separation between adjacent


atoms during vibrations contributes an energy term / ðxi � xi�1Þ2
, where xi is the


displacement of an atom from its equilibrium position. In this case a phonon may travel
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along hundreds of atoms without hindrance. However, with increasing energy, i.e.


temperature, vibrations become anharmonic and cubic terms replace the squared term


above because separate normal modes become coupled. Effectively, a cubic term describes


the emission of a phonon by another phonon or the decay of a phonon into two phonons


and the energies of individual phonons are changed. The phonons constitute a gas where


the phonons have approximately constant speed (unlike in a real gas), but have a larger


number density and energy density at the hot end of the crystal. Heat flow is primarily by


phonon flow with phonons being created at the hot end and destroyed at the cold end. The


thermal resistance in an insulator is produced by collisions which reverse the group


velocity of the phonons, and the Umklapp process involving high-energy phonons at Bragg


reflection on the edge of the Brillouin zone is significant here.


(Problems 13.20, 13.21)


Problem 13.1
The energy of an electron mass m charge e circling a proton at radius r is


E ¼ p2


2m
� e2


4	" 0r


where p is its momentum.
Use Heisenberg’s Uncertainty Principle in the form �p�r � �h to show that the minimum energy


(H2 atom ground state) is


E0 ¼ �me4


8" 2
0 h2


at a Bohr radius


r ¼ " 0h2


	me2


Problem 13.2
The observation of a particle annihilates its mass m and its rest mass energy is converted to radiation.


Use the relations �p�x � h and E ¼ pc for photons to show that the short wavelength limit on


length measurement is the Compton wavelength


� ¼ h


mc


Show that this is 2:42 � 10�12 m for an electron.


Problem 13.3
When x and p vary simple harmonically it can be shown that the averaged values of the squares of


the uncertainties satisfy the relation


ð�x2Þð�p 2Þ � �h2


4
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If the energy of a simple harmonic oscillation at frequency ! is written


E ¼ p2


2m
þ 1


2
m! 2x2


show that its minimum energy is 1
2


h�.


Problem 13.4
An electron of momentum p and wavelength � ¼ h=p passes through a slit of width �x. Its


diffraction as a wave may be regarded in terms of a change of its momentum �p in a direction


parallel to the plane of the slit (its total momentum remaining constant). Show that the approximate


position of the first minimum of the diffraction pattern is in accordance with Heisenberg’s


uncertainty principle. (Note that the variation of the intensity of the principal maximum in the


pattern is a direct measure of the probability of the electron arriving at a point on the screen.)


Problem 13.5
A beam of electrons with a de Broglie wavelength of 10�5 m passes through a slit 10�4 m wide.


Show that the angular spread due to diffraction is 5�47 0.


Problem 13.6
Show that the de Broglie wavelength of an electron accelerated across a potential difference V is


given by


� ¼ h=ð2m eeVÞ 1=2 ¼ 1:29 � 10�9V �1=2 m


where V is measured in volts.


Problem 13.7
If atoms in a crystal are separated by 3 � 10�10 m (3 Å) show that an accelerating voltage of � 3 kV


would be required to produce electrons diffracted by the crystal.


Problem 13.8
Electromagnetic radiation consists of photons of zero rest mass. Show that the average momentum


per unit volume associated with an electromagnetic wave of electric field amplitude E0 is given by


p ¼ 1
2
"0E 2


0=c


(Verify the dimensions of this relation.)


Problem 13.9
Show that the average momentum carried by an electromagnetic wave develops a radiation pressure


P ¼ cp ¼ 1
2
" 0E 2


0


when the wave is normally incident on a perfect absorber and a pressure


P ¼ 2cp ¼ "0E 2
0
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when the wave is normally incident on a perfect reflector. (Radiation incident from all directions


within a solid angle of 2	 will introduce a factor of 1=3 in the expressions above.)


Problem 13.10
If the radiation energy from the sun incident upon the perfectly absorbing surface of the earth is


1.4 W m�2 and the radiation comes from all directions within a solid angle of 2	 show that the


radiation pressure is about 10�11 of the atmospheric pressure.


Problem 13.11
In a carbon molecule the two atoms oscillate with a frequency of 6:43 � 10�11 Hz. Show that the


zero point energy is 1:34 � 10�3 eV ð1 eV ¼ 1:6 � 10�19 JÞ.


Problem 13.12
A particle of mass m moves in an infinitely deep square well potential of width 2a defined by


VðxÞ ¼ 0 � a � x � þ a


VðxÞ ¼ 1 jxj > a


If it is described by the wave function


 ðxÞ ¼ 1ffiffiffi
a


p 1 � 	2x 2


8a2


� �
for jxj � a


¼ 0 jxj > a


show by calculating
Ð a


�a
j ðxÞj 2


dx that the probability of finding it in the box is 0.96.
Show that in its normalized ground state, it is represented by  ðxÞ ¼ ð1=


ffiffiffi
a


p
Þ cos ð	x=2aÞ and


expand this in powers of 	x=2a to compare it with the wave function above.


Problem 13.13
Show that the normalization constant for the wave function


 ðxyzÞ ¼ A sin
n1	x


a
sin


n2	y


b
sin


n3	z


c


describing an electron in a volume abc at the bottom of a deep potential well is equal to


ð8=abcÞ 1=2
.


Problem 13.14
A total of N electrons occupy a volume V in a solid at a very low temperature between the energy


levels 0 to EF the Fermi energy.


Show that their total energy


U ¼
ð


E dn ¼
ð E F


0


E
dn


dE
dE


¼ 3


5
NE F


giving an average energy per electron of 3
5


EF.
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Problem 13.15
Copper has one conduction electron per atom, a density of 9 and an atomic weight of 64. Show that


n0, the number of free electrons per unit volume is � 8 � 1028 m�3 and that the value of its Fermi


energy level is about 7 eV ð1 eV ¼ 1:6 � 10�19 JÞ.


Problem 13.16
The probability of a particle of mass m penetrating a distance x into a classically forbidden region is


proportional to e�2� x where


� 2 ¼ 2mðV � EÞ=�h2


If x is 2 � 10�10 m (2 Å) and ðV � EÞ is 1 eV ð1:6 � 10�19 JÞ show that


e�2� x ¼ 0:1 for an electron


¼ 10�43 for a proton


Problem 13.17
A particle of total energy E travels in a positive x direction in a region where the potential energy


V ¼ 0. The potential suddenly drops to a very large negative value. Show that, quantum


mechanically, the amplitude of the reflected wave tends to unity and that of the transmitted wave to


zero. Note that this implies non-classical total reflection.


Problem 13.18
Show that Schrödinger’s equation for a one dimensional simple harmonic oscillator of frequency ! is


given by


d2 


dx2
þ 2m


�h2
E � 1


2
m!2x2


� 
 ¼ 0


and verify that if a 2 ¼ m!=�h then


 0ðxÞ ¼ ða=
ffiffiffi
	


p
Þ1=2


e�a 2x 2=2


and


 1ðxÞ ¼ ða=2
ffiffiffi
	


p
Þ 1=2


2ax e�a 2x 2=2


are respectively the normalized wave functions for E0 ¼ 1
2
�h! (zero point energy) and E1 ¼ 3


2
�h!:


Problem 13.19
The normalized wave function for a one-dimensional harmonic oscillator with energy


En ¼ ðn þ 1
2
Þ�h! is


 n ¼ NnHnðaxÞ e�a 2x 2=2;


where


Nn ¼ ða=	 1=22nn!Þ 1=2


a2 ¼ m!=�h
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and


HðyÞ ¼ ð�1Þ n
e y 2 dn


dyn
e�y 2


Verify that  0ðxÞ and  1ðxÞ of Problem 13.18 satisfy the expression for  n and calculate  2ðxÞ and


 3ðxÞ.


Problem 13.20
Davisson and Germer (1927) fired electrons with an energy of 54 eV at a nickel crystal which had an


atomic plane separation of 0:91 � 10�10 m ð0:91�AÞ. Bragg reflection gave a diffraction maximum at


65�. Calculate the reflected electron momentum p and the kinetic energy to show that the difference


between the incident and scattered kinetic energies was within 3.9%.


Problem 13.21
The perturbed energies of c (odd) and c (even) due to electron–ion interactions are given by


�E ¼
Ð
 �V dxÐ
 � dx


where  � is the complex conjugate of  


If the zero of energy is taken as the mean value of the potential then the potential may be written as
a Fourier series in the form


V ¼ �
X1
n¼1


Vn cos 2	nx=a


where the Vn are the potential gaps in Figure 13.16. They are positive numbers for a potential with


strong negative peaks at the lattice sites. For travelling waves  ¼ e�ikx so  � ¼ 1, which gives


�E ¼ 0 in the above expression except for  ¼ sin kx or cos kx when k ¼ n	=a where a is the


periodicity of the lattice.
Show that for  ¼ sin ka


�E ¼ �
X1
n�1


Ð
sin 2kxVn cos 2	nx


a
dxÐ


sin 2kxdx


¼ 1


2
Vn for k ¼ n	=a


Show that  ¼ cos kx in the above expression gives �E ¼ � 1
2


Vn for k ¼ n	=a


Summary of Important Results


De Broglie Wavelength � ¼ h=p


Heisenberg’s Uncertainty Principle (Bandwidth Theorem)


�x�p � h


�E �t � h


determines zero point energy.
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Schrödinger’s time independent wave equation


d2 ðxÞ
dx2


þ 2mðE � VÞ
�h2


 ðxÞ ¼ 0


 ðxÞ ¼ A ei k x þ B e�i k x;


where


k 2 ¼ 2mðE � VÞ
�h2


E > V


 ðxÞ ¼ C e�x þ D e��x;


where


�2 ¼ 2mðV � EÞ
�h2


V > E


Probability per unit length of finding a particle at x


PðxÞ ¼ j ðxÞj2


Normalization ð
j ðxyzÞj2


dx dy dz ¼ 1


all space


Harmonic oscillator


Energy levels En ¼ ðn þ 1
2
Þh�
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Non-linear Oscillations and Chaos


The oscillations discussed in this book so far have all been restricted in amplitude to those


which satisfy the equation of motion where the restoring force is a linear function of the


displacement. This restriction was emphasized in Chapter 1 and from time to time its


limiting influence has required further discussion; for example, in Chapter 6 on acoustic


waves in a fluid. We now discuss some of the consequences when this restriction is lifted.


We begin with simple examples in mechanical, solid state and electrical oscillators.


More complicated behaviour associated with chaos in these oscillators is also examined


together with the appearance of chaos in biological and fluid mechanical systems.


Free Vibrations of an Anharmonic Oscillator -- Large Amplitude
Motion of a Simple Pendulum


In Figure 1.1 the equation of motion of the simple pendulum was written in terms of its


angular displacement as


d2�


dt 2
þ !2


0� ¼ 0


where !2
0 ¼ g=l. Here, an approximation was made by writing � for sin �; the equation is


valid for oscillation amplitudes within this limit. When �� 7� however, this validity is lost


and we must consider the more complicated equation


d2�


dt 2
þ !2


0 sin � ¼ 0


Multiplying this equation by 2d�=dt and integrating with respect to t gives ðd�=dtÞ2 ¼
2!2


0 cos �þ A, where A is the constant of integration. The velocity d�=dt is zero at the


maximum angular displacement � ¼ �0, giving A ¼ �2!2
0 cos �0 so that


d�


dt
¼ !0½2ðcos �� cos �0Þ	1=2
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or, upon integrating,


!0t ¼
ð


d�


f2½cos �� cos �0	g1=2


If � ¼ 0 at time t ¼ 0 and T is the new period of oscillation, then � ¼ �0 at t ¼ T=4, and


using half-angles we obtain


!0


T


4
¼
ð � 0


0


d�


2½sin2 �0=2 � sin2 �=2	1=2


If we now express � as a fraction of �0 by writing sin �=2 ¼ sin ð�0=2Þ sin�, where, of


course, �1 < sin� < 1, we have


1
2
ðcos �=2Þ�� ¼ ðsin �0=2Þ cos���


giving


�


2


T


T0


¼
ð �=2


0


d�


½1 � ðsin2 �0=2Þ sin2 �	1=2


where T0 ¼ 2�=!0.


Expansion and integration gives


T ¼ T0ð1 þ 1
4


sin2 �0=2 þ 9
64


sin4 �0=2 þ � � �


or approximately


T ¼ T0ð1 þ 1
4


sin2 �0=2Þ


(Problem 14.1)


Forced Oscillations -- Non-linear Restoring Force


When an oscillating force is driving an undamped oscillator the equation of motion for


such a system is given by


m€xx þ sðxÞ ¼ F0 cos!t


where sðxÞ is a non-linear function of x, which may be expressed in polynomial form:


sðxÞ ¼ s1x þ s2x2 þ s3x3 . . .


where the coefficients are constant. In many practical examples sðxÞ ¼ s1x þ s3x3, where


the cubic term ensures that the restoring force sðxÞ has the same value for positive and


negative displacements, so that the vibrations are symmetric about x ¼ 0. When s1 and s3


are both positive the restoring force for a given displacement is greater than in the linear


case and, if supplied by a spring, this case defines the spring as ‘hard’. If s3 is negative the
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restoring force is less than in the linear case and the spring is ‘soft’. In Figure 14.1 the


variation of restoring force is shown with displacement for s3 zero (linear), s3 positive


(hard) and s3 negative (soft). We see therefore that the large amplitude vibrations of the


pendulum of the previous section are soft-spring controlled because


sin �  �� 1
3
�3


Figure 14.2 shows a mass m attached to points D and D 0, a vertical distance 2a apart, by


two light elastic strings of constant stiffness s and subjected to a horizontal driving force


F0 cos!t. At zero displacement the tension in the strings is T0 and at a displacement x (not


limited in value) the tension is T ¼ T0 þ sðL � aÞ where L is the stretched string length.


The equation of motion (neglecting gravity) is


m€xx ¼ �2T sin �þ F0 cos!t


¼ �2½T0 þ sðL � aÞ	 x


L
þ F0 cos!t


R
es


to
rin


g 
fo


rc
e


b
a


c


b
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c


displacement


Figure 14.1 Oscillator displacement versus restoring force for (a) linear restoring force, (b) non-
linear ‘hard’ spring, and (c) non-linear ‘soft’ spring


2a


F 0 cos wtx


L


D


D′


L


Figure 14.2 A mass m supported by elastic strings between two points D and D 0 vertically
separated by a distance 2a and subjected to a lateral force F 0 cos!t
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Inserting the value


L ¼ a 1 þ x


a


� �2
� �1=2


and expanding this expression in powers of x=a, we obtain by neglecting terms smaller than


ðx=aÞ3


m€xx ¼ � 2T0


a
x � ðsa � T0Þ


a3
x3 þ F0 cos!t


which we may write


€xx þ s1x þ s3x3 ¼ F0


m
cos!t


where


s1 ¼ 2T0


ma
and s3 ¼ sa � T0


ma3


If s3 is small we assume (as a first approximation) the solution x1 ¼ A cos!t, which yields


from the equation of motion


€xx1 ¼ �s1A cos!t � s3A3 cos3 !t þ F0


m
cos!t


Since cos3 !t ¼ 3
4


cos!t þ 1
4


cos 3!t, this becomes


€xx1 ¼ �ðs1A þ 3
4


s3 A3 � F0=mÞ cos!t � 1
4


s3 A3 cos 3!t


Integrating twice, where the constants become zero from initial boundary conditions, gives


as a second approximation to the equation


€xx þ s1x þ s3x3 ¼ F0


m
cos!t


the solution


x2 ¼ 1


!2
s1A þ 3


4
s3 A3 � F0


m


� �
cos!t þ s3 A3


36!2
cos 3!t


Thus, for s3 small we have a value of ! appropriate to a given amplitude A, and we can plot


a graph of amplitude versus driving frequency. Note that we have a third harmonic. We see


that for a system with a non-linear restoring force resonance does not exist in the same way


as in the linear case. In the example above, even when no damping is present, the amplitude


will not increase without limit for a driving force of a given frequency, for if ! is the natural


frequency at low amplitude it is no longer the natural frequency at high amplitude. For s3


positive (hard spring) the natural frequency increases with increasing amplitude and the
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amplitude versus frequency curve has a tilted maximum (Figure 14.3a). For a soft spring,


s3 is negative and the behaviour follows Figure 14.3b. It is possible for the tilt to become so


pronounced (Figure 14.3c) that the amplitude is not single valued for a given ! and shock


jumps in amplitude may occur at a given frequency (see the next chapter on the


development of a shock front in a high amplitude acoustic wave).


(Problems 14.2, 14.3)


Thermal Expansion of a Crystal


Chapter 1 showed that the curve of potential energy versus displacement for a linear


oscillator was parabolic. Small departures from this curve are consistent with anharmonic


oscillations. Consider the potential energy curve for a pair of neighbouring ions of opposite


charge � e in a crystal lattice such as that of KCl. If r is the separation of the ions the


mutual potential energy is given by


VðrÞ ¼ �e2


r
þ 	


r p


where � and 	 are positive constants and p ¼ 9. This is plotted in Figure 14.4, which shows


that the potential energy curve is no longer parabolic. The first term of VðrÞ is the energy


due to Coulomb attraction; the second is that of a repulsive force. The value of � depends


upon the presence of neighbouring ions and is about 0.3. The constant 	 can be found in


terms of � and the equilibrium separation r0 because, in equilibrium,


dV


dr


� �
r¼r 0


¼ �e2


r 2
0


� p	


r
pþ1
0


¼ 0


(a) (b) (c)


Shock
jumpA


m
pl


itu
de


w


Figure 14.3 Response curves of amplitude versus frequency for oscillators having (a) a ‘hard’ spring
restoring force, and (b) a ‘soft’ spring restoring force. In the extreme case (c) the tilt of the maximum
is sufficient to allow multi-valued amplitudes at a given frequency and ‘shock jumps’ may occur (See
Figure 15.1 for comparable behaviour in a high amplitude sound wave.)
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giving


	 ¼ �e2r
p�1
0


p


X-ray diffraction from such crystals gives r0 ¼ 3:12 Å for KCl, so that 	 may be found


numerically.


To consider small displacements from the equilibrium value r0 let us expand VðrÞ about


r ¼ r0 in a Taylor series to give


VðrÞ ¼ Vðr0Þ þ x
dV


dr


� �
r 0


þ x2


2!


d2V


dr 2


� �
r 0


þ x3


3!


d3V


dr 3


� �
r 0


where x ¼ r � r0. Since ðdV=drÞ r 0
¼ 0, we may write


VðrÞ � Vðr0Þ ¼ VðxÞ ¼ A
x2


2!
þ Bx3


3!


The quantity Ax2=2 is the quadratic term familiar in the linear oscillator, so that for very


small disturbances the bottom of the potential energy curve is parabolic, and a small gain in


energy causes the ion pair to oscillate symmetrically about r ¼ r0. An increase in the ion


pair energy involves the second term Bx3=6, and oscillations are no longer symmetric


about r0, because jr2 � r0j > jr1 � r0j in Figure 14.4. Hence the time average for r � r0 is


not zero as it is for a linear oscillator, and this time average rt > r0. If all ion pairs acquire


this amount of energy, for example by heating, the crystal expands. We may consider the


force between the two ions as


F ¼ � dV


dx
¼ �Ax � Bx2


2
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Figure 14.4 Non-parabolic curve of mutual potential energy between oppositely charged ions in
the lattice of an ionic crystal (NaCl or KCl). The combination of repulsive and attractive forces yields
an equilibrium separation r0. Very small energy increments give harmonic motion about r0 but
oscillations at higher energies are anharmonic, leading to thermal expansion of the crystal
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and note that the quadratic term here is responsible for the lack of symmetry in the motion.


If it were a cubic term as in the previous example the symmetry of motion about r0 would


still occur. The coefficient A in the force equation is the force constant in the discussion on


crystals in Chapters 5 and 6 and leads directly to Young’s modulus. The coefficient B gives


information on the coefficient of thermal expansion of the crystal.


(Problems 14.4, 14.5)


Non-linear Effects in Electrical Devices


A feature of the non-linearity in the mechanical devices discussed earlier was the


introduction of harmonics of the fundamental frequency of the driving force. It is


comparatively simple to avoid these effects of non-linearity in electronic systems by


choosing a small linear portion of the operating characteristic and amplifying the response


in stages. In an electromechanical device such as a piezoelectric crystal linearity is again


achieved by restricting all oscillations to small amplitudes and amplifying the response. In


electroacoustic devices such as microphones and loudspeakers the introduction of


harmonics often leads to severe distortion. In the loudspeaker of Figure 14.5 even if a


pure sinusoidal wave is delivered to the speech coil it is difficult to provide a mechanical


suspension for the cone which has a linear response. The cone acts as a piston radiating


acoustic power, and limitation of amplitude together with inevitable mismatching of


acoustic impedances reduces the efficiency of transforming electrical into acoustic power


to less than 10%. Fortunately the ear is a sensitive device.


Non-linear electrical oscillators are, however, often used, and Figure 14.6a shows a


‘relaxation oscillator’ circuit where a capacitance is discharged very rapidly through a


gaseous conductor such as a hydrogen tube. E is the constant charging potential and i is the


instantaneous value of the current which charges the capacitor through the resistor R to a


potential V s, the striking potential, at which the gas in the tube is ionized. The tube


Driving force F
α current in coil × magnetic field in gap


anharmonic output at high amplitude
S


N


S


Sinusoidal
input


Figure 14.5 A pure sinusoidal wave input to an electroacoustical device such as a loudspeaker will
lead to distorted sound output if the cone suspension has a non-linear stiffness at high amplitudes
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becomes highly conducting and discharges the capacitance in a negligibly short time to V e,


the extinction potential, at which the tube ceases to conduct. The capacitance charges again


to V s and the cycle is repeated. The variation of voltage across the capacitance with time is


shown in Figure 14.6b. Assume that at point A and time t the capacitance has just


discharged. If current i0 is flowing at time t ¼ 0 then


V e ¼ E � i0R e�t=RC


The capacitance charges to the potential V s in a time � so that


V s ¼ E � i0R e�ðtþ�Þ=RC


giving


V s � V e ¼ i0R ðe�t=RC � e�ðtþ�Þ=RCÞ
¼ i0R e�t=RC½1 � e��=RC	
¼ ðE � V eÞ½1 � e��=RC	


giving


e��=RC ¼ E � V s


E � V e


or


� ¼ RC loge


E � V e


E � V s


� �� �


(a)


(b)
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Figure 14.6 Electrical circuit of a non-linear ‘relaxation oscillator’. A capacitance C is charged
through a resistance R to a potential V s < E, at which the gas-filled valve strikes and rapidly
discharges the condenser to an extinction potential V e, when the valve ceases to conduct and the
cycle is repeated
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The period of oscillation is therefore directly proportional to the charging time constant RC.


A more sophisticated circuit produces a linear charging system with a very short


discharge time so that the exponential voltage output becomes linear and gives a ‘sawtooth’


waveform. From Chapter 10 we know that this periodic function contains many harmonics.


A sawtooth voltage output applied to the time base of an oscilloscope produces a linear


sweep of the spot across the tube.


Electrical Relaxation Oscillators


Van der Pol and Chaos (1926--1927)


The work of Van der Pol continues to attract the attention of research workers in chaos


chiefly because of an equation he derived at that time. His relaxation oscillator was a


multivibrator, a two stage resistance-capacity coupled amplifier with the output of the


second triode fed back as input to the grid of the first. His analysis used the mechanical


form of the damped simple harmonic equation with a negative resistance term which


increased the amplitude, thus


€xx � �x þ !2x ¼ 0


with a solution


x ¼ C eþ�t=2 sin ½ð!2 � �2=4Þt þ �	


for � > 0 and �2=4 < !2.


He restricted the unlimited growth of x by replacing � with �� 3=x2 where  is a


constant, writing !t ¼ t 0 and x ¼ ð�=3Þ1=2v to give his equation the form


€vv � "ð1 � v 2Þ _vv þ v ¼ 0


where " ¼ �=! and _vv ¼ dv=dt 0.
It is this equation with a forcing term A sin!0t on the right hand side which is known as


Van der Pol’s equation and which has formed the basis of a number of studies in chaos, one


of which we shall meet later. Van der Pol found that as " increased his oscillator gradually


assumed the period � ¼ RC with the output for " ¼ 10 shown in Figure 14.7 (Van der Pol,


1926).


Even more interesting from the viewpoint of chaos was the oscillator by which he could


produce subharmonics of its natural frequency. Such a phenomenon, period doubling,


tripling, etc. is now recognized as an early sign of chaos, indeed Li and Yorke (1975) have


published a paper entitled ‘Period 3 implies Chaos’.


Van der Pol’s period doubling circuit is shown in Figure 14.8. With E0 ¼ 0 and


C ¼ 10�3 mF the relaxation frequency of the system was 103 cycles. Setting E0 sin!t at


7:5 sin 2�103t he was able, by increasing C through the range 5--40 � 10�3 mF to produce


subharmonics !=2; !=3 . . .!=40 . . .!=200. He registered the output on a pair of loosely


coupled telephone earpieces and his paper makes the interesting comment that ‘often an


irregular noise is heard in the telephone receivers before the frequency jumps, however this


is a subsidiary phenomenon’. In fact, such internally generated noise accompanied by


subharmonics is one of the early signs of chaos (Van der Pol and Van der Mark, 1927).
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Figure 14.7 Non-linear relaxation oscillations of period � ¼ RC for an unforced Van der Pol system
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Figure 14.8 Van der Pol’s period doubling circuit
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Chaos in Population Biology


Chronological accounts of a modern research topic rarely present the most coherent


picture. The significance of early developments is not always recognized until much later;


indeed the first recorded strange or chaotic attractor, that of Lorenz in 1963, comes at the


end of this account but only because of its level of sophistication. Even the simple example


with which we begin was not fully explained when it first appeared.


Despite its simplicity the example of population biology reveals many of the


characteristics displayed by chaotic systems. These are:


� The chaos is deterministic and not random; that is, the paths followed by trajectories are


governed by solutions to given non-linear equations.


� Trajectories from closely neighbouring starting points diverge with time.


� Trajectories can, according to the conditions, finish on a stable point attractor, they can


diverge to infinity from a repellor or at some stage they can orbit in what is known as a


limit cycle.


� Such a limit cycle can develop an infinite series of period doubling; odd number periods


may be generated, also completely aperiodic trajectories which still remain within a


bounded region of space.


� With the appearance of chaotic motion the sharp definition of these frequencies is


gradually overcome by a growing background of wide band noise which is internally


generated.


A number of equations dealing with population biology has been widely studied but we


consider the simplest, a quadratic equation discussed by May (1976) in a classic review.


This is known as the logistic map and is given by


xnþ1 ¼ 4�xnð1 � xnÞ


where the subscripts refer to the year in which the population was measured and � is a


parameter. Restricting the values of x and � to 0 < x < 1 and 0 < � < 1 is a scaling device


which keeps the dynamics within the limits of a diagram. Because it involves only the


coordinate x this logistic equation is known as a one-dimensional map.


Much of the behaviour of populations under this quadratic rule is shown by the


interaction of the parabola and the straight line bisector xnþ1 ¼ xn of gradient unity and


this behaviour is divided into three distinct categories by the � ranges 0 < � < 1
4
; 1


4
< � < 3


4


and 3
4
< � < 1.


To illustrate the general use of the bisector consider what happens to a population with a


constant reproduction rate; that is, the straight line xnþ1 ¼ 4�xn. Figure 14.9a shows the


line for � > 1
4


compared with the bisector xnþ1 ¼ xn. Taking x0 as the starting value of the


population gives x1 on the � > 1
4


line which then projects horizontally to the same value


ðx1Þ on the bisector. This gives the value x1 on the base line which projects vertically to


the � > 1
4


line to give x2 and the process is repeated. Evidently for � > 1
4


the population
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Figure 14.9 Change of population with constant reproduction rate given by xnþ1 ¼ 4�xn. (a) for
� > 1


4 the population ! 1 as the trajectories move away from the origin (a repellor). (b) For � < 1
4


the population is extinguished, all trajectories moving to the stable point attractor at zero. The
initial population at x0 gives x1 on the � > 1


4 line which projects horizontally to the same value on
the bisector xnþ1 ¼ xn. The value x1 projects vertically to x2 on the � > 1


4 line and the process
repeats itself. Similarly for � < 1


4
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increases without limit, the trajectories move to infinity from a repellor. For x < 1
4
, Fig-


ure 14.9b, the same process of horizontal and vertical projection produces x1 < x0 and the


population is extinguished, all trajectories moving to the stable point attractor at zero.


The method is equally applicable to the parabola


xnþ1 ¼ 4�xnð1 � xnÞ


For � > 1
4


we have Figure 14.10 and where the curve and the bisector intersect we have


xnþ1 ¼ xn corresponding to a fixed point in the iteration process. Writing this value as


xnþ1 ¼ xn ¼ x� we find from x� ¼ 4�x�ð1 � x�Þ the two roots x� ¼ 0 and x� ¼ 1 � 1
4�


each of which is a fixed point.


Restricting x and � to the values between 0 and 1 gives for � < 1
4


only the value x� ¼ 0


but for 1
4
< � < 1; x� may take both values. If x� is stable; that is, a fixed point to which


the end points of all trajectories become infinitely close, Figure 14.10, it is a point attractor


and this stability depends on the slope of the curve at x�. We write xnþ1 ¼
4�xnð1 � xnÞ ¼ f ðxnÞ and if �1 < f 0ðxÞ < 1 at x�, x� is stable. When the slope f 0ðxÞ
equals �1 stability is lost and x� bifurcates into two new values, each of which is stable.


This is called a pitchfork bifurcation and is the origin of the period doubling sequence in


the logistic map. Odd numbered periodic cycles arise at a later stage from bifurcations into


pairs of new values, only one of each pair being stable. These are called tangent


bifurcations.


x 0 x 1


x n + 1


x n + 1 = x n


x 2 x* = 1 – 1 x n


< λ <1
4


3
4


1
4λ


Figure 14.10 The logistic equation xnþ1 ¼ 4�xnð1 � xnÞ cut by the bisector xnþ1 ¼ xn at the
points x� ¼ 0 and x� ¼ 1 � 1


4�. When 1
4 < � < 3


4 the latter value of x� is a stable point attractor for
all trajectories as shown
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The dependence of stability upon f 0ðxÞ at the fixed point x� follows from Taylor’s


theorem for, with xnþ1 ¼ f ðxnÞ and xn ¼ x� þ "n where "n is a very small quantity, we have


xnþ1 ¼ f ðx� þ "nÞ  f ðx�Þ þ "n f 0ðx�Þ
¼ x� þ "n f 0ðx�Þ


because x� ¼ f ðx�Þ at this fixed point x�.


Now xnþ1 ¼ x� þ "nþ1, giving f 0ðx�Þ ¼ "nþ1="n and for n ! 1, "nþ1 ! 0 only if


�1 < f 0ðxÞ < 1.


Thus, x� ¼ 0 is a stable point attractor for all trajectories when � < 1
4


but becomes


unstable at � ¼ 1
4


while x� ¼ 1 � 1
4� is a stable point attractor for all trajectories when


1
4
< � < 3


4
. At � ¼ 3


4
the slope of f ðxÞ at x� ¼ 1 � 1


4� equals �1, stability is lost, x�
bifurcates and a stable oscillation between two new values x�1 and x�2 develops. We can see


this by studying the behaviour of xnþ2 versus xn, obtained by a double application of the


logistic equation.


We can express xnþ2 ¼ f ðxnþ1Þ ¼ ff ðxnÞ ¼ f 2ðxnÞ where the superscript defines the


double application. A graph of f 2ðxÞ, which is symmetric, is shown in Figure 14.11a where


the central minimum decreases as � increases. The bisector is now of course xnþ2 ¼ xn


and, as shown, it cuts f 2ðxÞ at three fixed points. The value of � is chosen so that x�1 is near


the minimum and x�2 is near a maximum. The slope of f 2ðxÞ (written f 20ðxÞÞ at x�1 and x�2
is therefore close to zero and x�1 and x�2 are stable fixed points of f 2ðxÞ. It is at this value of


� ¼ 3
4


that period doubling begins.


The third fixed point x� is clearly the original fixed point of f ðxÞ. This follows from


noting that the point x� ¼ xn ¼ xnþ1 ¼ xnþ2 falls on both f ðxÞ and f 2ðxÞ and on their


respective bisectors. In addition, the stability behaviour of x� is the same for f ðxÞ and


f 2ðxÞ. We can show this via the chain rule, for if


x2 ¼ f ðx1Þ ¼ f 2ðx0Þ where x1 ¼ f ðx0Þ


then


f 20ðxÞ ¼ f 0ðx1Þ ¼
d½ f ðx1Þ	


dx1


dx1


dx
¼ d f ðx1Þ


dx1


� �
f 0ðxÞ


where all derivatives are evaluated at x ¼ x0. This result holds for higher values of the


superscript n in f nðxÞ.
Taking x0 as the fixed point x� then


x� ¼ x0 ¼ x1 ¼ x2


and


f 20ðx�Þ ¼ f 0ðx�Þ f 0ðx�Þ ¼ ð f 0ðx�ÞÞ2:


Thus, if x� is stable (unstable) in f ðxÞ then it is stable (unstable) in f 2ðxÞ.
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x n + 2 x n + 2 = x n


x 2 x n


(a)


*x 1* x*


x n + 1 x n + 1 = x n


x n


λ = 0.751


x 2*x 1*


(b)


Figure 14.11 (a) x�1 and x�2 are two of the three fixed points formed by the intersection of
xnþ2 ¼ f 2ðxnÞ and its bisector xnþ2 ¼ xn. The third fixed point is the original fixed point
x� ¼ 1 � 1


4� of xnþ1 ¼ f ðxnÞ. (b) When the value of � is just greater than 3
4 period doubling begins


between two new fixed points x�1 and x�2


Chaos in Population Biology 473







The stable fixed points x�1 and x�2 of f 2ðxÞ for � > 3
4


are not fixed points of f ðxÞ. Clearly,


since these points lie on the bisector xnþ2 ¼ xn, each will return to itself every second


iteration. This can occur only when the expressions


x�1 ¼ f ðx�2 Þ and x�2 ¼ f ðx�1 Þ


jointly hold so a trajectory ends in the cycle x�1 !x�2 !x�1 !x�2 , Figure 14.11(b).


(Problem 14.6)
In the same way that x�1 and x�2 became the two stable points at �1 ¼ 3


4
they will become


simultaneously unstable for some larger value �2 when f 20ðx�Þ ¼ �1. At �2, x�1 and x�2
will each bifurcate to two stable points to give a stable 4-cycle period based on the stable


fixed points of f 4ðxÞ. As the period doubling sequence continues, via pitchfork bifurcations,


the values �1; �2; �3; �4 . . . for the cycles 2; 22; 23; 2n . . . converge geometrically and


Feigenbaum (1978) found that for this period doubling sequence the limit as n ! 1 is


given by


�n!1 ¼ �nþ1 � �n


�nþ2 � �nþ1


¼ 4:6692016


This result appears to be verified not only for the logistic map but for other non-linear


equations with a single maximum and many experiments, computer simulated and


otherwise, support Feigenbaum’s result.


The value of � at which the cycle 2nðn ! 1Þ is approached is given by �1 ¼ 0:8925.


This is illustrated in Figure 14.12 where the successive bifurcations of 2n cycles become


0.0
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Figure 14.12 Bifurcations at period doubling for the logistic map begin at � ¼ 3
4 and reach the


limit 21 at �1. Between �1 and � ¼ 1 chaotic behaviour is interspersed with regions or windows
at which odd numbered cycles of period k and their harmonics k2n appear. Some cycles are aperiodic
(Figure 14.13). (From Tabor, 1989)
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increasingly compressed in the � space. Between the values of �1 and � ¼ 1 a very rich


behaviour is observed; there is an infinite number of different periodicities and an


uncountable number of very long cycles of no measurable period but which remain


bounded within the system (Figure 14.13).


The order in which these cycles appear has been successfully predicted by Metropolis et


al. (1973). The first odd cycle appears at � ¼ 0:9196 and the first period 3 cycle appears at


� ¼ 0:9571. This is an important cycle because of the paper by Li and Yorke entitled


‘Period 3 implies Chaos’ (Li and Yorke, 1975).


We can examine the origin of the first period 3 cycle in Figure 14.14(a). At some value


�� the bisector xnþ3 ¼ xn is tangent to the curve xnþ3 ¼ f ðxnÞ at the three fixed points x�1 ,


x�2 , x�3 . The slope of f 3ðxnÞ at these points must equal þ1 and each of these three unstable


fixed points bifurcates into a pair of which one is stable and the other is unstable. This is the


tangent bifurcation. The period 3 cycle orbits between the three stable fixed points (one


from each bifurcation) and we can follow the bifurcation process by increasing � beyond


�� by a small quantity. This heightens the maxima and deepens the minima so that the


bisector now cuts f 3ðxnÞ in pairs of points one on each side of the tangent position. A


typical pair is shown in Figure 14.14(b) on a magnified scale. The tangent point T


splits into points A and B each of which moves along the curve from T as � increases.


Point A moves from a gradient position of þ1 around the curve maximum to a


gradient position of less than 1 and forms the stable fixed point of the bifurcated pair. Point


x n + 1


x n


< λ < 13
4


Figure 14.13 An aperiodic cycle which remains bounded within the system for 3
4
< � < 1
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x n + 3 x n + 3 = x n


x 2 x n


(a)


T


* x 3*x 1*


λ < 0.9571


x n + 3 = x n(b)


λ = 0.9571


A


T


B


Figure 14.14 (a) The first period 3 cycle appears at � ¼ 0:9571. Just below this value of � the
bisector xnþ3 ¼ xn is tangent to xnþ3 ¼ f 3ðxnÞ at three unstable fixed points (gradient ¼ þ1). A
small increase of � splits these points into pairs, one point of each pair becoming stable. (b)
Magnification at tangent point T which splits into a pair A and B with a small increase in �. At T the
gradient is þ1 (unstable), A is stable at a reduced gradient and B is unstable at an increased gradient
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B moves from T (gradient +1) along the curve to a steeper gradient position and remains


unstable.


Thus, to quote May, ‘the fundamental stable dynamical units are of basic period k which


arise by tangent bifurcation along with their associated cascade of harmonics of periods


k2n which arise by pitchfork bifurcation. The hierarchy of stable cycles of period 2n


(namely, k ¼ 1) is merely a special case albeit a conspicuously important one’.


The one dimensional logistic map has one profound limitation. Figure 14.15 shows that


it is symmetric about the point x ¼ 1
2


so that any xnþ1 can arise from one of two different


values xn and x 0
n. This fails an essential requirement in chaos theory, namely that all


trajectories may be traced uniquely backwards in time to their origins. This property is


known as ‘invertibility’ and clearly the logistic map is non-invertible.


Chaos in a Non-linear Electrical Oscillator


The development of the varactor has made it possible to display many features of the


preceding section on a cathode ray oscilloscope in a first year university laboratory


experiment. The varactor acts as a diode in the forward direction but behaves in the reverse


direction as a variable non-linear capacitance in a series LCR circuit. Testa et al. (1982)


confirmed not only many of the results above but, in addition, supported two predictions


made by Feigenbaum (1979). These were


1. That bifurcation at period doubling follows a distinct procedure—as a 2n cycle loses


stability after 2n iterations, a point of the attractor just misses duplicating itself with


duplication occurring only after another 2n iterations. Thus each element of the cycle


splits into closely spaced pairs with 2n iterations required to visit an element from its


x n + 1


x n + 1


1 x nx n 1
2


x n′


Figure 14.15 The one-dimensional logistic equation xnþ1 ¼ 4�xnð1 � xnÞ is non-invertible
because trajectories cannot be traced uniquely backwards to their origins. Each xnþ1 can arise from
two different values of xn
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adjacent neighbour. From one bifurcation to the next, separation of adjacent elements in


a pair is reduced by a universal factor � ¼ 2:5029 (Figure 14.16).


2. After a spectral component in the period doubling process has been generated, its


amplitude remains approximately constant during further bifurcation and each new


subharmonic of this frequency can be predicted as having its amplitude reduced by


10 log10� where


� ¼ 4�


ð2 þ 1
� 2Þ1=2


¼ 6:57


A typical varactor LCR circuit is shown in Figure 14.17 with the non-linear capacitance


given by


CðVÞ ¼ C0=ð1 þ V c=	Þ


where V c is the voltage across the varactor. In Testa’s experiment C0 ¼ 300 pF,


	 ¼ 0:6;  ¼ 0:5;L ¼ 10 mH and R ¼ 28�. For low values of V0 this gave a high Q


resonance circuit at a frequency of 93 kHz. With f fixed near the resonance frequency in the


driving voltage V0 sin 2�ft, V0 was varied and the varactor voltage VcðtÞ was measured.


Testa et al. assumed that V0 played the role of � in the logistic equation and that V c


corresponded to x. A real time display on a double beam CRO of VcðtÞ and V0ðtÞ clearly


revealed threshold values of V0n for bifurcations into subharmonics f=n where


n ¼ 2; 4; 8; 16. At n ¼ 4 (not shown by Testa) this would appear as Figure 14.18.


Figure 14.19 was obtained on the oscilloscope screen by Testa with a slow horizontal


scan of V0 versus the varactor voltage Vc which was magnified in selected steps of 10 mV.


The numbers on the horizontal axis indicate the generation of particular periods and


a


a –1


(a) (b)


b


a


c


Figure 14.16 In the period doubling process the separation of adjacent elements in a pair is
reduced by a universal factor � from one bifurcation to the next. For period doubling between 16 and
32 � ¼ a=b ¼ 2:35 and � ¼ c=a ¼ 2:61. Reproduced by permission of The American Physical Society
from Testa et al. (1982)
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bifurcations are clearly visible. The threshold values of V0 for these periods are shown in


Table 14.1. The first four threshold values V0n gave


�1 ¼ V02 � V01


V03 � V02


¼ 4:257 � 0:1


C


Varactor


L


R


V 0 sin 2 p f tV d (t )


V c (t )


>


>


Figure 14.17 Non-linear LCR series circuit where the non-linear element is the varactor C which
acts as a diode in the forward direction but becomes a variable non-linear capacitance in the reverse
direction


V 0 (t )


τ


4τ


V c (t )


Figure 14.18 Double beam oscilloscope showing driving voltage V0ðtÞ at frequency f and varactor
voltage V cðtÞ at frequency f=4. Values of V 0n for appearance of f=n are given in Table 14.1
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Figure 14.19 Slow horizontal scan of V0 versus V c. The numbers on the horizontal axis indicate the
generation of particular periods. Bifurcations are clearly visible. Threshold values of V 0 for various
periods are shown in Table 14.1. Reproduced by permission of The American Physical Society from
Testa et al. (1982)
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Table 14.1 Table of periods and the threshold values V0 at which they appear


Threshold V0


Period (rms volts) comments


2 0.639


4 1.567


8 1.785 Threshold for periodic bifurcation


16 1.836


32 1.853


Chaos 1.856 Onset of noise


12 1.901
Window


24 1.902


6 2.073
Window


12 2.074


5 2.353
Window


10 2.363


7 2.693
Window


14 2.696


3 3.081


6 3.338
Wide Window


12 3.711


24 3.821


9 4.145
Window


18 4.154


Reproduced by pemission of the American Physical Society from Testa et al. (1982)
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and


�2 ¼ V03 � V02


V04 � V03


¼ 4:275 � 0:1


in the Feigenbaum convergence series.


To test the first of Eigenbaum’s predictions the values of c, a and b in Figure 14.16 were


measured for the bifurcations between periods 16 and 32. These gave


� ¼ a


b
¼ 2:35 and � ¼ c


a
¼ 2:61


As periods doubled the power reduction in their frequency components was measured and


the results were consistent with Feigenbaum’s analysis.


Phase Space


One of the most vital concepts in the description of chaos is that of phase space. In one


dimension, e.g. the logistic equation, trajectories can be followed without introducing it. In


higher dimensions it is essential.


The idea of phase space has many applications in physical sciences. Students meet it


initially in the Maxwell–Boltzmann statistical distribution where the question is asked:


‘Given N gas particles at a temperature T occupying a volume V, what fraction of N will be


found in the velocity range v to v þ dv in the small volume range dV?’ We shall discuss this


application to statistical distributions in an appendix at the end of the book.


The number of dimensions of phase space is determined by the number of coordinates


required to define the complete physical state of the system. For each gas particle above we


need six dimensions, three for the v x; v y; v z components in velocity space and three for the


x y z components in the configuration space V.


Each point in phase space defines the complete physical state of the system (here a gas


particle) and trajectories in phase space follow the physical development of the system.


When the energy of an ensemble of systems (particles) is conserved the phase space or


volume associated with them remains constant, but if any energy is dissipated the phase


volume contracts. This contraction generates a sub-space, there is a reduction in the


number of coordinates required and their range is reduced.


Figures 14.20–14.23 show, in turn, the two dimensional phase space diagrams of


different oscillators using the coordinates _xx and x.


1. A linear simple harmonic oscillator (Figure 14.20).


2. a damped simple harmonic oscillator (Figure 14.21).


3. an undamped non-linear oscillator formed by a pendulum supported on a light rigid rod


(Figure 14.22)


4. (a) an undamped oscillator with a potential energy


V ¼ � 1
2


ax2 þ 1
4


bx4
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Figure 14.20 Linear simple harmonic oscillator represented in the two dimensional phase space of
_xx and x. Each ellipse corresponds to a curve of constant energy and encloses a constant area of phase
space


x


x


Figure 14.21 The energy loss per cycle in a damped simple harmonic oscillator is shown in its
phase space diagram as a reduction of area with each cycle as its trajectory spirals to a stable point
attractor at the origin
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(b) the oscillator of 4(a) now lightly damped (Figure 14.23).


The features of each will now be described, introducing ideas which are frequently met in


chaotic systems.


1. The trajectory in _xxx phase space for a simple harmonic oscillator of constant energy is


an ellipse of constant area. Its potential energy curve is the familiar parabola of p. 10.


2. For a lightly damped simple harmonic oscillator where energy is dissipated the phase


space is an inward spiral on to the equilibrium zero position which is a stable point


attractor. As energy is lost each orbit of the spiral encloses a smaller element of phase


space than its predecessor, unlike (1).


3. Here we plot the phase portraits for a large range of pendulum energies E. The closed


curves represent those energy values up to the limit where the pendulum (rigid rod)


stands on its head with zero velocity and angular amplitude � ¼ �� measured from the


hanging rest position. Higher E values have open curves because their rotations are fast


enough to pass through the values of � ¼ ð2n þ 1Þ� with velocities _�� > �. The largest


closed curve has pointed ends, at maximum amplitude �, because _�� is small for changes


of � in that range. Each interval of 2� along the horizontal axis represents a complete


rotation.


The curves passing through � ¼ �� evidently separate those energies capable of


allowing complete rotations from those which cannot. Such a curve is called a


separatrix and the points � ¼ �� are called saddle points.


–3p 3p


q


q


–p p


Figure 14.22 Phase portraits for a non-linear pendulum on a light rod. The closed curves represent
energy values up to the limit _�� ¼ 0 at pendulum amplitude � ¼ � � ð� ¼ 0 is the hanging rest
position). The open curves represent fast rotations with energy values large enough for
_�� > 0 at � ¼ ð2n þ 1Þ�
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4. The potential energy curve V ¼ � 1
2


ax2 þ 1
4


bx4 is drawn together with the phase


portraits for the undamped and damped oscillators. For the undamped oscillator any


starting position with total energy less than VðxÞ ¼ 0 restricts the motion to one or other


of the potential wells. For any starting position greater than VðxÞ ¼ 0 the motion may


cross the potential barrier repeatedly. The trajectory associated with motion starting


from rest at any of the three VðxÞ ¼ 0 positions is the separatrix through the saddle


point.


If the oscillator now has a small damping term r _xx the final rest position is determined


exclusively by its starting values _xx and x. The saddle connection is broken and the two


equilibrium states are now competing point attractors. Starting positions of ð _xx; xÞ which


lie in the dotted regions of the phase space generate trajectories which will come to


(a)


(b)


V (x )


x


x


x


x


x


1


Figure 14.23 Potential energy curve V ¼ � 1
2 ax 2 þ 1


4 bx 4 with phase portraits for the damped and
undamped oscillators. For the undamped oscillator energies VðxÞ < 0 restrict the motion to that
potential well containing the _xxx starting position. (a) When the starting position is on the curve
VðxÞ > 0 the trajectories cross the potential barrier repeatedly. (b) For the damped oscillator
trajectories from a given range of _xxx starting positions will finish at the bottom of a particular
potential well (indicated by the shaded region known as the basin of attraction). The other basin of
attraction is unshaded. Reproduced by permission of John Wiley & Sons from Thompson and Stewart
(1986)
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equilibrium in the dotted attractor spiralling to rest at the minimum of the right hand


potential well. Similarly the clear region of phase space defines the starting positions


and trajectories which will finish at the minimum of the left hand potential well. Each of


these two phase space regions is called a basin of attraction.


Repellor and Limit Cycle


To illustrate the concepts of repellor and limit cycle in two dimensional phase space we


consider the damped non-linear oscillator governed by the equation


m€xx � r _xx þ d _xx3 þ sx ¼ 0


When x is very small we can neglect the d _xx3 term and if r is positive we have negative


damping giving outwardly spiralling trajectories from the central point which is therefore a


repellor. For large values of _xx; d _xx3 is the dominant term and the trajectories spiral inwards.


These competing effects are balanced at some boundary to form a steady state oscillation in


a stable limit cycle of fixed period, Figure 14.24.


The Torus in Three-dimensional ð _xx; x; t) Phase Space


Extending the ideas about phase space let us consider the generation of a torus by following


the trajectory of a particle (or system) subject to the influence of two perpendicular circular


simple harmonic motions of angular frequencies !0 and !1, where !0 traces a circle in the


azimuthal plane with a radius r0 while !1 causes the particle to spiral on the surface of a


torus of radius r1 (Figure 14.25). A cross section of the torus will be a circle of radius r1,


x


x


Figure 14.24 Repellor and limit cycle. Phase trajectories of an oscillator governed by the equation
m€xx � r _xx þ d _xx 3 þ sx ¼ 0. For x small and r positive, trajectories spiral outwards from the repellor at
the origin. For large _xx, the d _xx 3 term dominates and trajectories spiral inwards. These effects balance
at some boundary to form a stable limit cycle. Reproduced by permission of John Wiley & Sons from
Thompson and Stewart (1986)
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and the particle will register some point on the circumference of the circle each time it


passes the cross section. If !1 ¼ !0 this point will be identical for each period


�0 ¼ 2�=!0. However, if !1 6¼ !0 the particle will arrive at different points on the circle


circumference after each interval �0; for example, if !1 ¼ 3!0=4, the particle will travel


only 3
4


of the circumference for each �0 and will register the points A B C D of Figure 14.26


in that order.


Such a cross section is called a Poincaré section in phase space and is a vital tool in


describing the multiple excursions of trajectories in phase space associated with chaos. It is


always taken at some fixed interval of the system such as �0, a typical example, as we shall


see, is the period of the force driving an oscillator displaying chaotic motion.


The Poincaré section for a simple harmonic oscillator taken in the upper half plane


containing the _xx axis but normal to the x axis consists of only one spot at the maximum


value of _xx as the system passes through this position at intervals of �0. A similar section for


the damped oscillator will register a series of points between _xx maximum and the origin as


the trajectory spirals inwards.


A


ω0


ω1


r0


r1


f


Figure 14.25 Torus in ð _xxxtÞ phase space generated by a system subject to the influence of two per-
pendicular circular simple harmonic motions. The trajectory of the system spirals on the torus surface


A


C


B D


Figure 14.26 When !1 ¼ 3!0=4 in Figure 14.25, the system will register the points ABCD in that
order at a given cross section. This is an example of a Poincaré section in phase space
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If the motion associated with !1 is not circular the surface of the torus will be distorted.


We shall see that it can be pulled out, crinkled and folded back on itself so that its Poincaré


section will assume remarkable shapes. When the repeated excursions of trajectories are


located on such a surface it is called a manifold. The final state of such a distorted surface


represents the reduced phase space which follows the dissipation of energy. Within this space


is located the attractor to which the orbiting trajectories are bound.


Chaotic Response of a Forced Non-linear Mechanical Oscillator


Fifty years ago no engineer calculating the forced vibrations of a beam via the equation


€xx þ k _xx þ x3 ¼ B cos t


could have foreseen the complexity of response which computer simulated solutions have


uncovered. Ueda (1980) has found no fewer than 21 distinct regions of behaviour using a


range of B values (0–25) and k values (0–0.8) where the units are unspecified. Five of


these 21 regions display chaos, the others contain a variety of different attractors.


Thompson and Stewart (1986) have chosen particular B and k values from Ueda to


illustrate many basic features of chaotic oscillators and the use of Poincaré sections to


identify them. Even with the same B and k values the long term behaviour of the oscillator


is found to depend critically upon the starting values of _xx and x and Figure 14.27 shows the


phase trajectories and wave forms of five stable periodic motions around attractors for


B ¼ 0:2 and k ¼ 0:08 where the letter A denotes the starting point in each case.


We have already noted that one sign of impending chaos in a system is the divergence


with time of phase trajectories from almost identical starting positions even though their


behaviour is determined by the same equation. For a forced damped oscillator we saw on


p. 58 that this behaviour consists of two terms, a transient which decays with time leaving


the steady state component.


One of Ueda’s chaotic regimens lies in the B range (6–8) and the k range (0.03–0.1) and


Thompson and Stewart chose B ¼ 7:5 and k ¼ 0:05 for their illustration. Figure 14.28


shows phase trajectories of the oscillator for two almost identical starting positions labelled


A and a of ð _xx; xÞ. Because the vibration waveform of the oscillator is so irregular there is


only one way of registering the passage of time on this two-dimensional phase diagram and


that is by marking off the constant period �0 associated with cos t of the driving force. This


gives points B and b and the trajectory divergence is already evident. This divergence may


be traced over many periods of �0 and is found to be exponential with time. We can


associate the points B and b and their successors after each interval of �0 with the


formation of our Poincaré section of the torus on p. 489. Figure 14.29 shows the history of


the single phase trajectory which started at A marked off in alphabetical order over the first


nine periods of �0. Note that each letter represents a maximum of the driving force B cos t


and that all letters fall on the right hand side of the _xx axis, that is x positive.


Tracing this complicated trajectory on the three-dimensional ð _xxxtÞ phase surface of the


torus would separate that is time resolve, the apparent trajectory crossing points in the two-


dimensional picture. If now only the Poincaré section points A, B, C, D, etc. are plotted
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over a very large number of intervals of �0 they build up a shape of which that shown in


Figure 14.30 is typical.


Irrespective of any starting position or of the size and duration of any transients all long


term, steady state, Poincaré section points eventually settle to contribute to this pattern. It


bears the signature of a chaotic attractor for high resolution displays a fine structure known


as fractal. It is an example of the stretching and folding of an ensemble of steady state


trajectories in phase space during which the trajectories become thoroughly mixed; that is,


change from one set of close neighbours to another. The important point is that despite


mixing, the trajectories retain their distinct identities and never merge; their time histories


are invertible.


A Brief Review


We now review briefly the discussion so far in order to present a clearer picture of what we


shall expect to identify in following sections.


We saw on p. 474 how chaos could be approached via period doubling but that the


symmetry of the population biology equation created an ambiguity on the route to chaos, so
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x


Ueda′s (a1) solution
Starts A (−0.21,0.2)
Small amplitude
n = 1 attractor


Ueda′s (a2) solution
Starts A (1.05,0.77)
Large amplitude
n = 1 attractor


Ueda′s (a3) solution
Starts A (−0.67,0.02)
First of
n = 2 pair


Ueda′s (a4) soln.
Starts A (−0.46,0.30)
Second of
n = 2 pair


Ueda′s (a5) solution
Starts A (−0.43,0.12)
n = 3 attractor


Figure 14.27 Phase trajectories for the oscillator €xx þ 0:08 _xx þ x 3 ¼ 0:2 cos t are seen to depend
critically upon the starting values of _xx and x. The letter A denotes each starting position. Reproduced
by permission of John Wiley & Sons from Thompson and Stewart (1986)
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that no final point on a trajectory could be uniquely time reversed back to its origin. This


essential time reversal arises from the continuity of unique solutions to the non-linear


equations governing the system. The solution at a given time defines the complete state of


the system and occupies a point in phase space so that, with time, the trajectory traces a


line in phase space. However, trajectories with close origins in a chaotic attractor system


diverge exponentially with time while the energy dissipation always associated with chaotic


attractors requires the phase space volume to contract. To reconcile these contradictory


features, phase space of at least three dimensions is required and the problem is resolved


essentially through stretching and folding this phase space. The distortion of phase space


on a torus surface is an example of this.


To illustrate this process of stretching and folding, which we shall discuss later in more


detail, we may consider two trajectories, originally close neighbours, which diverge as they


spiral outwards on a plane (Figure 14.31) leaving the plane only to fold over by attraction


and return back to the centre of the spiral. The divergence; that is, the sensitivity to initial


conditions results from the stretching process and the folding comes from the attraction.


The uniqueness of the trajectories in phase space ensures that they remain distinct, that they


never merge, no matter how complex the phase space structure becomes. This complexity


−7 −3 −2 −1 0 1 2 3


−6


−5


−4


−3


−1


−2


1


0


2


3


4


5


6


7
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B
b


x


x


Figure 14.28 Two phase trajectories from almost identical starting positions A and a for the
oscillator €xx þ 0:05 _xx þ x 3 ¼ 7:5 cos t. After one period of the driving force the trajectories have
diverged respectively to B and b. Reproduced by permission of John Wiley & Sons from Thompson and
Stewart (1986)
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is revealed by the fractal nature of the highly resolved Poincaré section of the chaotic


attractor in Figure 14.30.


We now explain what is meant by fractal structure and discuss how theories of phase


space distortion or mapping produce it.


Fractals


In topology a curve has a dimension of one and a surface a dimension of two. There are


higher integral dimensions. The word ‘fractal’ was coined by Mandelbrot in 1975 to


express the idea of a ‘shape’ with a non-integral dimension. He has since published books


on the subject containing many beautiful computer generated patterns. The essential


feature of all these fractal patterns is that they are self similar which means that,


irrespective of scale, they retain the same geometric appearance. A well known example is


the Koch snowflake.


Koch Snowflake


Figure 14.32 shows an equilateral triangle of side length 3l. On the central section of each


side is placed a similar triangle of side l and the process is repeated indefinitely to produce
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Figure 14.29 A single phase trajectory traced over the first nine periods of the driving force in
Figure 14.28. In three dimensional phase space the apparent crossing points would be separated by
time resolution. Reproduced by permission of John Wiley & Sons from Thompson and Stewart (1986)
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a curve of infinite length ð3l � 4
3
� 4


3
. . .Þ but which encloses a finite area less than that of


the circle surrounding the original triangle.


Mandelbrot was first led to the idea of fractals by studying noise on a transmission line.


He found that the pattern or the distribution of the noise remained the same whether taken


over a period of an hour, a minute or a second; that is, self similarity prevailed. He identified


the pattern as belonging to a Cantor set which dates from the nineteenth century and which


G. D. Birkhoff had suggested in the 1920s might be significant in dynamical systems.


Cantor Set


The Cantor set (Figure 14.33) is constructed by removing the centre part l of a line of


length 3l and repeating the process indefinitely. We define the total set of points lying on


Figure 14.30 Poincaré section for an oscillator similar to that of Figures 14.28 and 14.29. High
resolution displays a fractal fine structure. Reprinted with permission from ‘Steady motions exhibited
by Duffing’s equation: A picture book of regular and chaotic motions’, by Yoshisuke Ueda, published
in New Approaches to Nonlinear Problems in Dynamics, pp. 311--322. Copyright 1980 by the Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania. All rights reserved
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the line segment l to be some function f ðlÞ and assume this total set to be preserved so that


f ð3lÞ ¼ 2f ðlÞ


If then f ðlÞ is considered to vary as some power � of l so that f ðlÞ � l � we have


f ð3lÞ ¼ 2f ðlÞ giving ð3lÞ � ¼ 2l � so that 3 � ¼ 2 and � ¼ log 2=log 3 ¼ 0:6309. This is the


non-integral fractal dimension of the Cantor set.


x


z


y


Figure 14.31 Trajectories around a chaotic attractor diverge yet remain within a bounded region.
This is achieved by the stretching and folding of phase space


Figure 14.32 The Koch snowflake has a fractal non-integral dimension. The final pattern has
infinite length but encloses a finite area less than that of the circle surrounding the original triangle
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(Problem 14.7)


The importance of the Cantor set is that the highly resolved Poincaré section of a chaotic


attractor such as that on p. 493 reveals a Cantor set-like structure. It results from stretching


the phase space and folding it closely into layers. It is the signature of a chaotic attractor


and we now look at how this may be achieved.


Smale Horseshoe


The mathematical process which describes the stretching and folding of phase space is


called mapping and a number of such maps have now been devised to produce this effect,


e.g. the Smale horseshoe (Smale, 1963).


In this example (Figure 14.34) a square is taken, stretched to double its length while its


width is reduced to form a rectangle of area less than the square. The square may be taken


as a cross section of a particular volume of phase space containing an ensemble or


collection of trajectories the ends of which are shown as dots within the square. The


reduction of area in the stretching process is equivalent to reducing the phase space by


energy dissipation; at the same time it separates trajectories from their neighbours. The


rectangle is then folded over into a horseshoe, the stretching and folding process is now


repeated with the horseshoe again and again, so that successive cross sections reveal a


Cantor set-like structure. The relative positions of the original trajectories are completely


changed in this process.


Figure 14.33 A Cantor set has a fractal non-integral dimension and is produced by removing the
central third of a line and repeating the process indefinitely with the remaining segments. Poincaré
sections of chaotic attractors have a Cantor set-like structure
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Chaos in Fluids


Turbulence in fluids is the most widely observed of all chaotic motions. Fast flowing water


from a tap or around a blunt obstacle loses its low speed coherence and flow symmetry. A


satisfactory description of the behaviour is made more difficult because:


� The theory of the liquid state is less well developed than that of gases and liquids.


� Experimental methods have until recently used probes which disturb the state of the


system being measured.


The second of these difficulties has now been overcome by the development of laser-


Doppler techniques combining the holographic system (p. 404) with the Doppler effect


(p. 141).


Typically, a laser beam of frequency �0 and wavelength �0 is split so that one half acts as


a reference beam while the other is focused on a small fluid element (� 0:1 mm diameter)


moving with a velocity u. This beam is scattered through an angle � with a frequency � s.


The relationship between �0 and � s is shown in Figure 14.35b. In Figure 14.35a the


scattered beam joins the reference beam which is now modulated to give a component at


the detector of the Doppler shift frequency �D ¼ � s � �0. If k0 and k s are the wave number


vectors associated respectively with �0 and � s then the component of the velocity u parallel


(c) (d)


(a) (b)


Figure 14.34 The Smale horseshoe takes a square cross section of phase space containing an
ensemble of trajectories (dotted ends), stretches the square to a rectangle of reduced area and folds
the rectangle into a horseshoe. The process is repeated continuously with successive cross sections
revealing a Cantor-set-like structure. The relative positions of the trajectories are changed in the
process as the trajectories are mixed
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to the vector k ¼ k0 � k s depends only upon �0, sin �=2 and �D. Velocities in the range of


10�6 to 103 ms�1 are capable of being measured by this system.


The frequency �D is so much greater than the frequencies associated with the fluid


motion that the measured uðtÞ gives an instantaneous velocity value. Continuous records of


uðtÞ over long periods may be Fourier analysed to show sharply defined frequency


components when the flow is periodic with the appearance of broad band noise when the


flow becomes chaotic.


Chaos in fluids has been studied chiefly in two systems:


1. Couette flow where the appropriate parameter is the dimensionless Reynolds number.


2. Rayleigh–Bénard convection where the parameter is the dimensionless Rayleigh


number. This system is the model used by Lorenz in finding the original strange attractor.


Couette Flow


This flow was completely defined in the classic paper of G. I. Taylor (1923). In its simplest


form it is produced in a fluid contained in the gap between two concentric cylinders with


Fluid element


Beamsplitter


Detector


Laser


Laser


nsksrs


n0k0r0


n0k0r0


nsksrs


nD = ns - n0


ns = n0


n0


q


u⋅(r0 − rs) n
c


1−


q(b)


(a)


Figure 14.35 (a) Scheme of the laser-Doppler technique for velocity measurements in a fluid. (b)
The vector relationship between the scattered frequency � s, the incident laser frequency �0 and the
fluid velocity u; r is a unit vector, n the refractive index of the fluid and c the velocity of light. The
Doppler shift frequency is �D ¼ � s � �0
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radii differing by about a centimetre. One of the cylinders is fixed while the others rotates


with an angular velocity ! although sometimes both cylinders may rotate with different


angular velocities. The outer cylinder is usually glass, allowing observation of the flow.


At low speeds of angular rotation the flow is symmetric in the azimuthal direction


(Figure 14.36a).


For flow in one dimension the relevant equation would read


�ux


@ux


@x
¼ �@p


@x
þ �@ 2ux


@x2


where � is the fluid density, ux is the velocity in the x direction, p is the pressure and � is


the fluid viscosity. Each term in the equation has the dimensions of force per unit volume;


the left hand side term may be considered as an inertial force and the last term may be seen


as the viscous force. Flow symmetry depends on the relative strengths of these forces and


the Reynolds number is written dimensionally as


Re ¼ inertial force


viscous force
¼ �u2


L


L2


�u
¼ uL


�


where � ¼ �=� is the kinematic viscosity and u and L are a characteristic velocity and


length of the system.


For Couette flow


Re ¼ r i!d


�


where r i is the radius of the inner cylinder and d is the width of the cylindrical gap.


For slow speeds, that is low Re, any departure from symmetry is overcome by the viscous


force restoring the system to equilibrium but as Re increases with increasing !, the inertial


effects of any departure from symmetric flow may be too great for the restoring viscous


force and purely azimuthal Couette flow is lost.


This loss of symmetry for high Re first shows itself as a series of vortices around each


azimuthal flow line, so that fluid elements follow a spiral path in the azimuthal direction


(Figure 14.36b). These vortices, called Taylor cells, are seen to arise as follows.


An elemental toroid of the fluid initially at radius r1, circulating at angular velocity ! r 1


is displaced to radius r2. If its angular momentum is conserved we have


! r 1
r 2


1 ¼ ! 0
r 1


r 2
2


where ! 0
r 1


is its new angular velocity. Its centrifugal force will exceed that of the fluid


originally at r2 circulating with angular velocity ! r 2
if


! 0
r 1


�� �� > ! r 2
j j


Hence an instability develops if ! r 1
r1j j2> ! r 2


r2j j2
for r2 > r1; that is, if


d


dr
j!r 2j < 0
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This is known as the Rayleigh criterion for the instability of Couette flow.


When the inner layers of the fluid are moving more rapidly than the outer layers they


tend to move outwards because the centrifugal force is greater than the pressure holding


them in place. A whole layer cannot move out uniformly because the outer layers are in the


way so it breaks into cells which circulate.


The rotational motion of a fluid element in a Taylor cell appears as a periodic velocity


variation in the z direction of Figure 14.36. Increasing Re that is the angular velocity of the


cylinder, now causes harmonic oscillations of the vortices in the z direction as transverse


waves travel around the azimuthal torus (Figure 14.36c). The frequency of these waves will


be registered via the velocity measurements and as Re increases still more, other


frequencies are generated and broad band noise begins to dominate with the appearance of


chaos (Figure 14.37).


Rayleigh--Bénard Convection


In this process heat provides the energy driving asymmetries in the flow. The incom-


pressible fluid is contained between two horizontal plates about a centimetre apart, the


lower of which is heated. For a small constant temperature difference between the plates


the thermal conductivity and viscosity of the fluid ensure that the heat is conducted


upwards in an orderly fashion (Figure 14.38a). When the temperature gradient is too steep


the effect of these forces in maintaining equilibrium is overcome, flow symmetry is


ω ω ωz


(a) (b) (c)


Re increasing


Figure 14.36 In Couette flow a liquid is contained in the gap between two concentric cylinders one
of which has an angular velocity ! with respect to the other. At low Reynolds number Re the flow is
azimuthal as in (a). As Re increases flow symmetry is lost and vortices develop (b). A further increase
of Re develops transverse waves along the lines of vortices (c)
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lost and convective rolls in both clockwise and anti-clockwise directions can develop


(Figure 14.38b).


This occurs at some critical value of the Rayleigh parameter which we derive from the


relevant equations. These are, in the positive z direction


�uz


@uz


@z
¼ � @p


@z
þ ��


@ 2uz


@z2
� �g��T


uz


dT


dz
¼ K


d2T


dz2


In the last term of the first equation g is the acceleration due to gravity, � is the thermal


expansion coefficient and �T is the constant temperature difference between the plates.


This term is the buoyancy force which drives the warmer, less dense, liquid upwards. In the


second equation K is the thermal diffusivity (p. 190) and equals k=�Cp where k is the


thermal conductivity and Cp is the specific heat at constant pressure.


Figure 14.37 The number of frequencies of the waves in Figure 14.36c increases with Re but broad
band noise begins to dominate with the appearance of chaos in the bottom figure. Reproduced by
permission of the American Institute of Physics from Swinney and Gollub (1978)
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In the first equation the buoyancy force responsible for upward motion is opposed by the


viscous term. If the strength of these forces is comparable, a low pressure gradient in the fluid


will keep the inertial force on the left hand side low enough for the flow to remain symmetric.


Comparable values of the buoyancy and viscous terms will give


�
@ 2uz


@z2
 g��T


to yield some characteristic velocity


U � g��TL2


�
ð14:1Þ


where L, a characteristic length, is usually the depth of the liquid.


The second equation determines the temperature distribution and the ratio


uzdT=dz


Kd2T=dz2
� UL


K
ð14:2Þ


tells us that for K large enough the thermal conductivity will distribute the heat rapidly


enough for the symmetric conduction process to prevail. Combining (14.1) and (14.2) using


the common factor U gives the Rayleigh number


Ra ¼ g��TL3


�K


When the Rayleigh number is small enough, � and K govern the conduction process. At


some critical Rayleigh number Ra c convective fluid motion driven by �T replaces pure


∆T


z


Heat
Ra


Rac


(a)


(b)


Figure 14.38 (a) at low Rayleigh numbers Ra fluid in a Rayleigh--Bénard cell conducts heat away
from the base in a symmetric fashion. At some critical value Ra c flow symmetry is lost (b) and
convective rolls develop in clockwise or anti-clockwise directions
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heat conduction, instabilities develop and the flow becomes asymmetric. At the critical


value Ra c convective rolls in the right or left handed direction begin to show, with a single


frequency and its harmonics appearing in the velocity flow spectrum. Increasing Ra beyond


Ra c introduces further frequency components which are followed by the onset of noise as


chaos sets in (Figure 14.39).


The Strange Attractor of Lorenz


Lorenz (1963) used the Rayleigh–Bénard process as the basis of his model of atmospheric


convection in assessing the possibility of long range weather forecasting. The physical


model is so restricted that it yields only the most rudimentary information about weather


patterns, enough however to show that long range forecasting is not feasible because phase


trajectories starting from almost identical positions diverge after a relatively short time.


The two-dimensional convection rolls which appear in the rectangular cross section of


Figure (14.38b) when Ra > Ra c can be described by two velocity components together
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Figure 14.39 The development of frequencies in the velocity flow spectrum at the critical Rayleigh
number Ra c with the onset of noise as chaos sets in (bottom figure). Reproduced by permission of
the American Institute of Physics from Swinney and Gollub (1978)
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with the deviation of the temperature from the linear conduction profile of low Ra. These


three quantities, two of velocity and one of temperature, were expanded in two-


dimensional Fourier series with terms (modes) of the form AijðtÞ sin kix sin kjz (p. 248)


where the time dependence now appears in the amplitude coefficient. These expansions


were used in the hydrodynamic equations of the last section to produce an infinite set of


ordinary differential equations, but Lorenz reduced this number to three by considering


only the first three modes of the Fourier expansion.


The first mode XðtÞ determined by the velocity components gives a single convective roll


filling the rectangular cell (Figure 14.40). The second mode YðtÞ describes the temperature


differences between ascending and descending currents in the convective roll and the third


mode ZðtÞ represents the departure from linearity of the vertical temperature profile.


Each mode is a phase space coordinate and the modes XYZ represent the physical state of


the system at a given time.


The Lorenz equations take the form


_XX ¼ �ðY � XÞ
_YY ¼ rX � Y � XZ


_ZZ ¼ XY � bZ


where � is the ratio of the fluid viscosity to its thermal conductivity, r is the ratio Ra=Ra c


and b is a geometric factor governed by the ratio h=l (height/length) of the cell in


Figure 14.40. Lorenz took � ¼ 10 (the approximate value for water) and b ¼ 8=3.


To show that the volume of phase space containing the trajectories decreased with time,


Lorenz used a transport theorem of fluid dynamics relating the space rate of change of


vectors describing a flow integrated over a volume V to the time rate of change of the same


l


h


HEAT


Constant
∆T


Figure 14.40 The first mode XðtÞ in the Lorenz equations gives a single convective roll, clockwise
for X positive, anti-clockwise for X negative. Warm rising fluid in this mode indicates where X and Y
have the same sign. The ratio h=l determines the geometric factor b in the Lorenz equations
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volume. The vector in phase space may be written as Fð _XX; _YY ; _ZZÞ to give


d


dt
VðtÞ ¼


ð
V


div F dV


Div F from p. 203 is given by


@ _XX


@X
þ @ _YY


@Y
þ @ _ZZ


@Z


with a value of �ð�þ b þ 1Þ ¼ �13:67 in Lorenz’s equations, so dVðtÞ=dt is negative.


This reduction in phase space volume indicates that the trajectories will eventually be


confined to some limiting manifold.


The overall behaviour of the system can be conveniently divided into various ranges of


the value of r ¼ Ra=Ra c.


When


_XX ¼ _YY ¼ _ZZ ¼ 0


there are three solutions to the Lorenz equations. These are


ð1Þ X ¼ Y ¼ Z ¼ 0


ð2Þ X ¼ Y ¼ þ½bðr � 1Þ	1=2 : Z ¼ ðr � 1Þ
ð3Þ X ¼ Y ¼ �½bðr � 1Þ	1=2 : Z ¼ ðr � 1Þ


When r < 1 solution (1) corresponds to a steady process of pure conduction with no


convection, typical behaviour for small �T . Solutions (2) and (3) correspond to states of


steady convection which exist only when r > 1.


If there is now a small perturbation from the condition _XX ¼ _YY ¼ _ZZ ¼ 0 the behaviour of


(1) remains stable as pure conduction for r < 1, trajectories moving to the origin X ¼
Y ¼ Z ¼ 0 as a point attractor. As r increases beyond unity, steady convection will give


way to the right and left handed convective rolls of solutions (2) and (3) which now


correspond to separate stable attractors each with its own basin of attraction and set of


spiralling trajectories.


At r  13:9 the separation between the basins of attraction is lost and trajectories move


between (2) and (3) before settling on one or the other. At r  24:7 (2) and (3) lose their


stability as limit cycles and beyond this value of r the trajectories form two connecting


bands, one centred on (2), the other on (3). (2) and (3) are now chaotic attractors with


trajectories orbiting aperiodically around one before switching to the other.


Problem 14.1
If the period of a pendulum with large amplitude oscillations is given by


T ¼ T0 1 þ 1


4
sin2 � 0


2


� �
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where T0 is the period for small amplitude oscillations and �0 is the oscillation amplitude, show that


for � 0 not exceeding 30�, T and T 0 differ by only 2% and for � 0 ¼ 90� the difference is 12%.


Problem 14.2
The equation of motion of a free undamped non-linear oscillator is given by


m€xx ¼ �f ðxÞ


Show that for an amplitude x0 its period


� 0 ¼ 4


ffiffiffiffi
m


2


r ð x 0


0


dx


½Fðx0Þ � FðxÞ	 1=2
; where Fðx0Þ ¼


ð x 0


0


f ðxÞ dx


Problem 14.3
The equation of motion of a forced undamped non-linear oscillator of unit mass is given by


€xx ¼ sðxÞ ¼ F 0 cos!t


Writing sðxÞ ¼ s 1x þ s 3x3, where s 1 and s 3 are constant, choose the variable !t ¼ �, and for


s 3 � s 1 assume a solution


x ¼
X1
n¼1


an cos
n


3
�þ bn sin


n


3
�


� �


to show that all the sine terms and the even numbered cosine terms are zero, leaving the fundamental


frequency term and its third harmonic as the significant terms in the solution.


Problem 14.4
If the mutual interionic potential in a crystal is given by


V ¼ �V0 2
r 0


r


� � 6


� r 0


r


� �12
� �


where r 0 is the equilibrium value of the ion separation r, show by expanding V about V 0 that the ions


have small harmonic oscillations at a frequency given by ! 2  72 V0=mr 2
0, where m is the reduced


mass.


Problem 14.5
The potential energy of an oscillator is given by


VðxÞ ¼ 1
2


kx 2 � 1
3


ax3


where a is positive and � k.


Assume a solution x ¼ A cos!t þ B sin 2!t þ x1 to show that this is a good approximation at
!2


0 ¼ !2 ¼ k=m if x1 ¼ �A2=2!2
0 and B ¼ ��A2=6!2


0, where � ¼ a=m.


Problem 14.6
Prove that when � > 0:75 in Figure 14.11 then the slopes of f 2ðxÞ at x�1 and x�2 are the same.
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Problem 14.7
Use the arguments in the paragraph on the Cantor set (p. 495) to show that the Koch snowflake has a


fractal dimension of 1.2618.


Recommended Further Reading
Non-linear Dynamics and Chaos by Thompson, J. M. T. and Stewart, H. B., Wiley, New York (1986).
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15


Non-linear Waves, Shocks
and Solitons


Non-linear Effects in Acoustic Waves


The linearity of the longitudinal acoustic waves discussed in Chapter 6 required the


assumption of a constant bulk modulus


B ¼ � dP


dV=V


If the amplitude of the sound wave is too large this assumption is no longer valid and the


wave propagation assumes a new form. A given mass of gas undergoing an adiabatic


change obeys the relation


P


P0


¼ V0


V


� ��
¼ V0


V0ð1 þ �Þ


� ��


in the notation of Chapter 6, so that


@P


@x
¼ @p


@x
¼ ��P0ð1 þ �Þ�ð�þ1Þ @


2�


@x2


since � ¼ @�=@x.


Since ð1 þ �Þð1 þ sÞ ¼ 1, we may write


@p


@x
¼ ��P0ð1 þ sÞ�þ1 @


2�


@x2
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and from Newton’s second law we have


@p


@x
¼ ��0


@ 2�


@t 2


so that


@ 2�


@t 2
¼ c2


0ð1 þ sÞ�þ1 @
2�


@x2
; where c2


0 ¼ �P0


�0


ð15:1Þ


Physically this implies that the local velocity of sound, c0ð1 þ sÞð�þ1Þ=2
, depends upon


the condensation s, so that in a finite amplitude sound wave regions of higher density and


pressure will have a greater sound velocity, and local disturbances in these parts of the


wave will overtake those where the values of density pressure and temperature are lower.


A single sine wave of high amplitude can be formed by a close fitting piston in a tube


which is pushed forward rapidly and then returned to its original position. Figure 15.1a


shows the original shape of such a wave and 15.1b shows the distortion which follows as it


propagates down the tube. If the distortion continued the wave form would eventually


appear as in Figure 15.1c, where analytical solutions for pressure, density and temperature


would be multi valued, as in the case of the non-linear oscillator of Figure 14.3c. Before


this situation is reached, however, the wave form stabilizes into that of Figure 15.1d, where


at the vertical ‘shock front’ the rapid changes of particle density, velocity and temperature


produce the dissipating processes of diffusion, viscosity and thermal conductivity. The


velocity of this ‘shock front’ is always greater than the velocity of sound in the gas into


which it is moving, and across the ‘shock front’ there is always an increase in entropy. The


competing effects of dissipation and non-linearity produce a stable front as long as the


wave retains sufficient energy. The N-type wave of Figure 15.1d occurs naturally in


explosions (in spherical dimensions) where a blast is often followed by a rarefaction.


The growth of a shock front may also be seen as an extension of the Doppler effect


(p. 141), where the velocity of the moving source is now greater than that of the signal. In


Figure 15.2a as an aircraft moves from S to S 0 in a time t the air around it is displaced and


the disturbance moves away with the local velocity of sound v S. The circles show the


positions at time t of the sound wave fronts generated at various points along the path of the


aircraft but if the speed of the aircraft u is greater than the velocity of sound v S regions of


high density and pressure will develop, notably at the edges of the aircraft structure and


(a) (b) (c) (d)


Pressure


Figure 15.1 The local sound velocity in a high amplitude acoustic wave (a) is pressure and density
dependent. The wave distorts with time (b) as the crest overtakes the lower density regions. The
extreme situation of (c) is prevented by entropy-producing mechanisms and the wave stabilises to an
N type shock-wave (d) with a sharp leading edge
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along the conical surface tangent to the successive wavefronts which are generated at a


speed greater than sound and which build up to a high amplitude to form a shock. The


cone, whose axis is the aircraft path, has half angle 	 where


sin	 ¼ v S


u


It is known as the ‘Mach Cone’ and when it reaches the ground a ‘supersonic bang’ is heard.


The growth of the shock at the surface of the cone may be seen by considering the sound


waves in Figure 15.2(b) generated at points A (time tA) and B (time tB) along the path of


the aircraft, which travels the distance AB ¼ x ¼ u�t in the time interval �t ¼ tB � tA.


The sound waves from A will travel the distance r0 to reach the point P at a time


t0 ¼ tA þ r0


v S


Those from B will travel the distance r1 to P to arrive at a time


t1 ¼ tB þ r1


v S


S S′ S′′ S′′′


θ


θ


α


P
(a)


u ∆t


A


P


B


r1
r0


(b)


Figure 15.2 (a) The circles are the wavefronts generated at points S along the path of the aircraft,
velocity u > v S the velocity of sound. Wavefronts superpose on the surface of the Mach Cone (typical
point P) of half angle 	 ¼ sin�1 v S=u to form a shock front. (b) At point P sound waves arrive
simultaneously from positions A and B along the aircraft path when ðu=v SÞ cos � ¼ 1: ð�þ 	 ¼ 90�Þ


Non-linear Effects in Acoustic Waves 507







If x is small relative to r0 and r1, we see that


r1 � r0 � x cos � ¼ u�t cos �


so the time interval


t1 � t0 ¼ tB � tA þ ðr1 � r0Þ
v S


¼ �t � u�t cos �


v S


¼ �t 1 � u cos �


v S


� �


For the aircraft speed u < v S, t1 � t0 is always positive and the sound waves arrive at P in


the order in which they were generated.


For u > v S this time sequence depends on � and when


u


v S


cos � ¼ 1


t1 ¼ t0 and the sound waves arrive simultaneously at P to build up a shock.


Now the angles � and 	 are complementary so the condition


cos � ¼ v S


u


defines


sin	 ¼ v S


u


so that all points P lie on the surface of the Mach Cone.


A similar situation may arise when a charged particle q emitting electromagnetic


waves moves in a medium of refractive index greater than unity with a velocity v q which


may be greater than that of the phase velocity v of the electromagnetic waves in the


medium ðv < cÞ. A Mach Cone for electromagnetic waves is formed with a half angle	where


sin	 ¼ v


v q


And the resulting ‘shock wave’ is called Cerenkov radiation. Measuring the effective


direction of propagation of the Cerenkov radiation is one way of finding the velocity of the


charged particle.


Shock Front Thickness


The extent of the region over which the gas properties change, the shock front thickness,


may be only a few mean free paths in a monatomic gas because only a few collisions


between atoms are necessary to exchange the energy required to raise them from the
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equilibrium conditions ahead of the shock to those behind it. In a polyatomic gas the


collisions are effective in producing a rapid increase in translational and rotational


mode energies, but vibrational modes take much longer to reach their new equilibrium, so


that the shock front thickness is very much greater.


Within the shock front thickness the state of the gas is not easily found, but the state of


the gas on one side of the shock may be calculated from the state of the gas on the other


side by means of the conservation equations of mass, momentum and energy.


Equations of Conservation


In a laboratory, shock waves are produced in a tube which is divided by a diaphragm into a


short high-pressure section and a much longer low-pressure section. When the diaphragm


bursts the expanding high pressure gas behaves as a very fast low-inertia piston which


compresses the low pressure gas on the other side of the diaphragm and drives a shock


wave down the tube. The profile of this shock wave is the step function shown as the dotted


line in Figure 15.3, and the gas into which the shock is propagating is considered to be


at rest. This simplifies the analysis, for we can consider the situation in Figure 15.3 as it


appears to an observer O travelling with the shock front velocity u1 into the stationary gas.


The shock front is located within the region bounded by the surfaces A and B of unit area,


each of which remains fixed with respect to the observer. The stationary gas which moves


through the shock front from surface B acquires a flow velocity u < u1 and a velocity


relative to the shock front of u2 ¼ u1 � u. From the observer’s viewpoint the quantity of


gas flowing into unit area of the region AB per unit time is �1u1, where �1 is the density of


Observer on shock front


Shock front velocity u1


Shocked gas
Density r2
Pressure P2
Flow velocity u
Relative velocity
u2 = u1−u


Stationary gas
Density r1
Pressure P1
Relative velocity
         u1


Unshocked
gas at rest


x


A B


P
re


ss
ur


e


Figure 15.3 The pressure ‘step profile’ of a shock wave developed in a shock tube is shown by the
dotted line. The plane cross-sections at A and B remain fixed with respect to the observer O moving
with the shock front at velocity u1 into unshocked gas at rest of pressure p 1 and density � 1. The
shocked gas has a pressure p2, a density � 2 and a velocity u, with a relative velocity u2 ¼ u 1 � u
with respect to the shock front. The states of the gas at A and B are related by the conservation
equations of mass, momentum and energy across the shock front. Experimental measurement of the
shock velocity u 1 is sufficient to determine the unknown parameters if the stationary gas parameters
are known
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the gas ahead of the shock. The quantity leaving unit area of AB per unit time is


�2ðu1 � uÞ ¼ �2u2, where �2 is the density of the shocked gas.


Conservation of mass yields �1u1 ¼ �2u2 ¼ m (a constant mass). The force per unit area


acting across the region AB is p2 � p1, which equals the rate of change of momentum of


the gas within the unit element, which is mðu1 � u2Þ. The conservation of momentum is


therefore given by


p1 þ �1u2
1 ¼ p2 þ �2u2


2:


The work done on unit area of the region per unit time is p1u1 � p2u2, and this equals the


rate of increase of the kinetic and internal energy of the gas passing through unit area of the


shock wave.


The difference


p1u1 � p2u2 ¼ p1


�1


m � p2


�2


m


so that if the internal energy per unit mass of the gas is written eð p; �Þ, then the equation of


conservation of energy per unit mass becomes


1


2
u2


1 þ e1 þ
p1


�1


¼ 1


2
u2


2 þ e2 þ
p2


�2


where for an ideal gas p=� ¼ RT and e ¼ cvT ¼ ð1=� � 1Þp=�, where T is the absolute


temperature, cv is the specific heat per gram at constant volume and � ¼ cp=cv, where cp is


the specific heat per gram at constant pressure.


These three conservation equations


�1u1 ¼ �2u2 ¼ m ðmassÞ
p1 þ �1u2


1 ¼ p2 þ �2u2
2 ðmomentumÞ


and


1


2
u2


1 þ e1 þ
p1


�1


¼ 1


2
u2


2 þ e2 þ
p2


�2


ðenergyÞ


together with the internal energy relation eð p; �Þ completely define the properties of an ideal


gas behind a shock wave in terms of the stationary gas ahead of it.


In an experiment the properties of the gas ahead of the shock are usually known, leaving


five unknowns in the four equations, which are the shock front velocity u1, the density of


the shocked gas �2, the relative flow velocity behind the shock u2, the shocked gas pressure


p2 and its internal energy e2. In practice the shock front velocity u1 is measured and the


other four properties may then be calculated.


Mach Number


A significant parameter in shock wave theory is the Mach number. It is a local parameter


defined as the ratio of the flow velocity to the local velocity of sound. The Mach number of
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the shock front is therefore M s ¼ u1=c1, where u1 is the velocity of the shock front


propagating into a gas whose velocity of sound is c1.


The Mach number of the gas flow behind the shock front is defined as Mf ¼ u=c2, where


u is the flow velocity of the gas behind the shock front ðu < u1Þ and c2 is the local velocity


of sound behind the shock front. There is always an increase of temperature across the


shock front, so that c2 > c1 and M s > Mf . The physical significance of the Mach number


is seen by writing M 2 ¼ u2=c2, which indicates the ratio of the kinetic flow energy,
1
2


u2 mol�1, to the thermal energy, c2 ¼ �RT mol�1. The higher the proportion of the total


gas energy to be found as kinetic energy of flow the greater is the Mach number.


Ratios of Gas Properties Across a Shock Front


A shock wave may be defined in terms of the shock Mach number M s, the density or


compression ratio across the shock front  ¼ �2=�1, the temperature ratio across the shock


T2=T1 and the compression ratio or shock strength y ¼ p2=p1.


Given the shock strength, y ¼ p2=p1, the conservation equations are easily solved to


yield


M s ¼
u1


c1


¼ y þ 	


1 þ 	


� �1=2


where


	 ¼ � � 1


� þ 1


 ¼ �2


�1


¼ 	þ y


1 þ 	y


and


T2


T1


¼ y
1 þ 	y


	þ y


� �


Alternatively these may be written in terms of the experimentally measured parameter M s as


p2


p1


¼ y ¼ M 2
s ð1 þ 	Þ � 	


�2


�1


¼  ¼ M 2
s


1 � 	þ 	M 2
s


and


T2


T1


¼ ½	ðM 2
s � 1Þ þ M 2


s 
½	ðM 2
s � 1Þ þ 1



M 2
s


For weak shocks (where p2=p1 is just greater than 1) , T2=T1 and M s are also just greater


than unity, and the shock wave moves with the speed of sound.
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Strong Shocks


The ratio p2=p1 � 1 defines a strong shock, in which case


M 2
s ! ð� þ 1Þ


2�
y


and


 ¼ �2


�1


! � þ 1


� � 1


� �


a limit of 6 for air and 4 for a monatomic gas for a constant �. The flow velocity


u ¼ u1 � u2 ! 2u1


ð� þ 1Þ


and the temperature ration


T2


T1


¼ c2


c1


� �2


! ð� � 1Þ
ð� þ 1Þ y


The temperature increase across strong shocks is of great experimental interest. The


physical reason for this increase may be seen by rewriting the equation of energy


conservation as 1
2


u2
1 þ h1 ¼ 1


2
u2


2 þ h2, where h ¼ ðe þ p=�Þ is the total heat energy or


enthalpy per unit mass. For strong shocks h2 � h1 of the cold stationary gas and u1 � u2,


so that the energy equation reduces to h2 � 1
2


u2
1, which states that the relative kinetic


energy of a stationary gas element just ahead of the shock front is converted into thermal


energy when the shock wave moves over that element. The energy of the gas which has


been subjected to a very strong shock wave is almost equally divided between its kinetic


energy and its thermal or internal energy. This may be shown by considering the initial


values of the internal energy e1 and pressure p1 of the cold stationary gas to be negligible


quantities in the conservation equations, giving the kinetic energy per unit mass behind the


shock as


1
2


u2 ¼ 1
2
ðu1 � u2Þ2 ¼ e2


the internal energy per unit mass of the shocked gas.


In principle, the temperature behind very strong shock waves should reach millions of


degrees. In practice, real gas effects prevent this. In a monatomic gas high translational


energies increase the temperature until ionization occurs and this process then absorbs


energy which otherwise would increase the temperature still further. In a polyatomic gas


the total energy is divided amongst the various modes (translational, rotational and


vibrational) and the temperatures reached are much lower than in the case of the


monatomic gas. The reduction of � due to these processes is significant, since with
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increasing ionization � ! 1, and the temperature ratio depends upon the factor


ð� � 1Þ=ð� þ 1Þ which becomes very small.


(Problems 15.1, 15.2, 15.3, 15.4, 15.5, 15.6)


Solitons


We have seen that a pulse, limited in space, is also limited in time. Fourier analysis shows


that a pulse is the superposition of a large number of components with different frequencies


and that the high frequency components contribute to the vertical edges of the pulse Fig-


ure 10.3. The superposition of these components changes as phase differences develop;


different frequencies will have different phase velocities and the pulse disperses.


It is surprising, therefore, that high amplitude solitary waves or solitons are known to


exist. The first recorded observation of a soliton is that of Scott–Russel (1844) who saw a


single wave about 40 cm high travelling along a canal in Scotland. Rayleigh (1876)


developed an expression for the shape of this soliton based on the hydrodynamics of waves


in shallow water.


That expression, the bell-shaped Figure 15.4 is given by


� ¼ a sech2	ðx � x0Þ


where


	 ¼ 1


2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a


h2ðh þ aÞ


s
:


x
x0


h


= a sec h2a (x − x0)h


h


a


Figure 15.4 The solitary wave (soliton) on a shallow canal seen by Scott--Russel (1844) was
described as a sech2 bell-shaped function by Rayleigh (1876). The canal depth is h, the soliton
amplitude is a and � measures a displacement on the soliton curve. The soliton is centred at x0 and 	
is a function of a and h
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�, a, h and x0 are all shown in Figure 15.4. The coordinate x0 about which the static figure


is centred is replaced by ct when the soliton is moving; c is the soliton velocity and t is the


time. We shall see that c is related to the height of the soliton. Larger amplitude solitons


move faster.


Further sightings of solitons on Dutch canals led to a thorough discussion of waves with


finite amplitude in shallow water by Korteweg and de Vries (1895). Their equation


describing soliton behaviour is known as the KdV equation and is now taken as the basis of


soliton theory. We shall not pursue the relevant fluid dynamics necessary to obtain the KdV


equation but we shall obtain its mathematical form by a method which may lack formal


rigour but which provides a good working model. It also emphasizes the physical


characteristics which produce a soliton.


The underlying physics of solitons is the competition between two processes. One of


these causes a high amplitude or non-linear wave to break; we have seen this in the


formation of a shock wave in Figure 15.1c. This results from the increased phase velocities


of the high amplitude non-linear components of the wave.


In a soliton this is opposed by the dispersion of the wave components in such a way that


a stable profile is maintained.


We shall derive the form of the KdV equation and then discuss the following topics:


 Solitons, Schrödinger’s equation and elementary particles.


 Solitons in optical fibres. Telecommunications..


A list of references is given at the end of the chapter.


Non-Linearity


Equation (15.1) shows that the higher amplitude components of an acoustic wave


propagate with a phase velocity


v ¼ @x


@t
¼ c0ð1 þ sÞ�þ1=2


where c0 is the phase velocity of a small amplitude linear wave and s, the condensation, is a


measure of the compression in the wave.


We may expand this, to a first order, to give


v ¼ @x


@t
¼ c0 1 þ � þ 1


2
s . . .


� �
ð15:2Þ


In a linear, low-amplitude, right-going wave we have


� ¼ �m e ið!t�kxÞ
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So, denoting @�=@t as � t and @�=@x as � x we have


� t=�x ¼
�!
k


¼ �c0


or


� t þ c0� x ¼ 0 ð15:3Þ


Throughout this chapter we shall indicate partial differentiation with respect to a variable


by writing that variable as a subscript. Thus, � t ¼ @�=@t; �x ¼ @�=@x; � tt ¼ @ 2�=@t 2 and


� xx ¼ @ 2�=@x2. Replacing c0 in equation (15.3) by v in equation (15.2) gives


� t þ c0 1 þ � þ 1


2


� �
s


� �
� x ¼ 0


which, because s ¼ k � is in phase with � t (Figure 6.2), becomes


� t þ c0 1 þ � þ 1


2


� �
k�


� �
� x ¼ � t þ c0�x þ c0


� þ 1


2


� �
k�� x ¼ 0 ð15:4Þ


We are interested in non-linear effects and after removing the linear contribution of


equation (15.4) we are left with the non-linear expression


� t þ b�� x ¼ 0 ð15:5Þ


where


b ¼ c0


� þ 1


2


� �
k


Equation (15.5) provides the first two terms of the KdV equation. We now consider the


third, the dispersion term, which competes with the non-linear b��x term.


Dispersion and the Form of the KdV Equation A typical dispersion equation is that for


transverse and longitudinal waves in a periodic structure given by equation (5.12) as


v ¼ !


k
¼ c0


sin ka=2


ka=2


� �


where k is the wave number and a is the particle separation. For small k, long �, we may


expand the sine term to give


v ¼ !


k
¼ c0


ka=2


ka


2
� ka


2


� �3


� � � þ
" #


Solitons 515







or


! ¼ c0k 1 � ka


2


� �2
" #


¼ c0k � dk 3 ð15:5aÞ


where


d ¼ c0a2=4


Writing a linear wave in the form


� ¼ �m e ið!t�kxÞ


gives


� t ¼ i!�; � x ¼ �ik� and � x x x ¼ ik 3�


which, with equation (15.5a), gives


� t þ c0� x þ d� x x x ¼ 0


Again, the contribution � t þ c0� x applies only to linear waves and replacing this for non-


linear waves by equation 15.5


� t þ b�� x


gives


� t þ b�� x þ d� x x x ¼ 0 ð15:6Þ


where b and d are constant coefficients. This is the form of the KdV equation which


describes soliton behaviour. The coefficients b and d depend upon the particular soliton


under discussion.


We gain an insight into the effect of the dispersion term by considering the following.


Let us write a right-going linear wave in the form


� ¼ �m eið!t�kxÞ ¼ �m eikðc 0t�xÞ


where


! ¼ c0k


The effect of dispersion, from the previous section, changes ! ¼ c0k to


! ¼ c0k 1 � ka


2


� �2
" #


so we have


� ¼ �m exp ik c0 1 � ka


2


� �2
( )


t � x


" # !
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and dispersion has the effect of shifting the wave. Note that in this case of normal


dispersion the shift retards the higher k, shorter wavelength terms.


Mathematically, this dispersive shift is used to offset the steepening, wave breaking


effects of non-linearity. The technique, known as a Gardner–Morikawa transformation, is


to choose a coordinate system which moves with the velocity c0, the pulse rides on this


moving coordinate so that dispersion relative to c0 is much reduced. In addition, because


any dispersive change is now so much slower, a much longer time scale � > t is chosen and


the final aim is to show that changes in the soliton profile are negligible in the � time scale.


The Elements of the KdV Equation Although we derived the form of the KdV equation


using the amplitude �, the equation is most often written in terms of a quantity u which


may represent any property of the wave which varies with distance and time.


In their paper ‘The Discovery of the Soliton’ (1965) Zabusky and Kruskal used the


equation in the form


ut þ uux þ � 2ux x x ¼ 0 ð15:7Þ


where � � 1.


Their experiment was made by computer simulation. In the absence of the third


dispersive term the non-linear equation


ut þ uux ¼ 0 ð15:8Þ


describes the development of the shock wave of Figure 15.1. The positive pulses of Figure


15.1a, b and c are superposed in Figure 15.5 with u plotted against x. It is evident that ut


increases with higher values of u and equation (15.8) retains a single valued solution only


as long as the gradient ux of the leading edge becomes increasingly negative as the pulse


steepens.


Now equation (15.8) is satisfied by any function u ¼ f ðx � utÞ—see Problem 15.7—and


ux ¼ ð1 � uxtÞ f 0 ð15:9Þ


u a b c


x


Figure 15.5 Figs. 15.1 (a), (b) and (c) superimposed to show breaking of a non-linear wave
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where


f 0 ¼ @f=@ðx � utÞ


Taking the pulse profile at t ¼ 0 as u ¼ f ðxÞ ¼ cos�x equation (15.9) shows that


ux ¼ �1 at u � 0 (the foot of the pulse) when x ¼ 0:5 and t ¼ 1=�. At this point the wave


becomes infinitely steep and breaks. This behaviour was observed by Zabusky and Kruskal.


When Zabusky and Kruskal added the third dispersion term in their computer experiment


to give the KdV equation


ut þ uux þ � 2ux x x ¼ 0


they found that after a time t ¼ 1=� the solution broke into a train of solitary waves


(solitons) of successively larger amplitudes with the larger waves travelling faster than the


smaller ones. Even more important from the point of view of optical solitons, after one


soliton had overtaken another, each soliton retained its unique identity (Figure 15.6).


Solitons are transparent to each other and are unaffected by mutual collisions.


(Problems 15.7, 15.8)


Two Important Forms of the KdV Equation


1. The KdV equation for shallow water waves may be written in the form


ut þ 6uux þ ux x x ¼ 0 ð15:10Þ
with a solution


uðx; tÞ ¼ 2	2sech2 	ðx � ctÞ


¼ 2
@ 2


@x2
log ½1 þ e2	ðx�ctÞ



or


uðx; tÞ ¼ 2
@ 2


@x2
log ½1 þ e�2	ðx�ctÞ



A A′


B


v1 v2 < v1 v1


Figure 15.6 The velocity of a soliton increases with its magnitude and solitons are transparent in
mutual collisions, each retaining its own identity. A large soliton A overtakes a smaller soliton B to
emerge as A 0 with B unaffected
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Note that the exponents in the log solutions may be positive or negative.


The sech2 form of the solution may be seen to fit equation (15.10) with a soliton


velocity c ¼ 4	2 (twice the maximum value of u) by showing that


ut ¼ 2	uc tanh�; where � ¼ 	ðx � ctÞ
uux ¼ �2	u2 tanh�


and


ux x x ¼ �8	3u tanh�þ 12	u2 tanh�


The sech2 shape of the soliton is shown in Figure 15.7. Its peak value is


u ¼ 2	2


(Problems 15.9, 15.10)


2. The second important form of the KdV equation is


ut � 6uux þ ux x x ¼ 0 ð15:11Þ


(the shallow water wave form with a negative second term). This has a time


independent soliton solution of


uðxÞ ¼ �2	2 sech2ðx � x0Þ


where x0 locates the centre of the soliton. This solution may be shown to satisfy


equation (15.11) by calculating ux and ux x x as for equation (15.10).


A graph of this soliton, Figure 15.8, shows its minimum to have a value of �2	2. Its


importance is its connection with Schrödinger’s equation, which we now discuss.


2α2


x


Figure 15.7 The KdV equation ut þ 6uux þ ux x x ¼ 0 has a soliton solution uðx; tÞ ¼
2	2 sech2 	ðx � ctÞ with a maximum value of 2	 2
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(Problem 15.11)


Solitons, Schrödinger’s Equation and Elementary Particles


In 1968, Miura found a remarkable connection between equation (15.11) and the equation


v t þ 6v 2v þ v x x x ¼ 0 ð15:12Þ


which itself has a soliton solution.


Miura showed that if v 2 þ v x ¼ u then


@


@x
þ 2v


� �
ðv t � 6v 2v x þ v x x xÞ ¼ ut � 6uux þ ux x x ð15:13Þ


(Problem 15.12)


So if v satisfies equation (15.12) with the sign of its second term changed, then u satisfies


equation (15.11). Now Miura’s transformation with


v 2 þ vx ¼ uðxÞ and v ¼  x= 


yields


 xx � uðxÞ ¼ 0 ð15:14Þ


(Problem 15.13)


If uðxÞ is now transformed to uðxÞ � �, where � is a constant, then equation (15.14)


becomes Schrödinger’s equation


 xx þ ð�� uðxÞÞ ¼ 0


with � as an eigenvalue.


x0


-a 
2


-2a 
2


Figure 15.8 The KdV equation ut � 6uux þ ux x x ¼ 0 has a time independent solution uðxÞ ¼
�2	 2 sech2 	ðx � x 0Þ with a minimum value of �2	 2. This equation is related via Miura’s
transformation to Schrödinger’s equation which has an eigenvalue of � ¼ �	 2
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So Miura’s transformation has related the KdV equation


ut � 6uux þ ux x x ¼ 0 ð15:11Þ


to Schrödinger’s equation


 x x þ ð�� uðxÞÞ ¼ 0 ð15:15Þ


Using the soliton solution


u ¼ �2	2 sech2 	ðx � x0Þ


of equation (15.11) we can show that the wave function


 ¼ A sech	ðx � x0Þ; where A is a constant ð15:16Þ


satisfies equation (15.15) when the eigenvalue � ¼ �	2 which is half the value of the


minimum of the soliton with which it is associated (Figure 15.8) (See Gardner et al., 1967).


(Problems 15.14, 15.15, 15.16)


Since � is negative this represents a bound state in wave mechanics.


Other values of � > 0 may be associated with solitons but these are not bound states and


are related to progressive waves.


The fact that solitons may be associated with Schrödinger’s equation and retain their


unique identities in mutual collisions has led physicists to postulate that solitons may


appear as massive elementary particles much heavier than the proton.


Solitons may enter particle physics in another way, confined not only in space but in


time. In this case they are called instantons. Instantons have already been used to explain a


pattern of particle masses which had posed a long-standing puzzle.


There are four ways of making quark–antiquark mesons from light quarks. Three of


these mesons have been known for many years: the negative, positive and neutral pi


mesons (pions) with masses equivalent to about 140 MeV (an electron equivalent mass is


� 0:5 MeV).


The fourth meson has never been found but the eta meson has all the required properties


except its mass which is about 550 MeV. Instantons explain this mass anomaly—they


appear as energy excitations, located in space, in the field which binds the quarks together.


They change the mass distribution among the mesons because they affect the various quark


combinations in different ways (see Rebbi, 1979).


Optical Solitons


At the time of this writing the most practical use of solitons is in telecommunications.


Optical fibres act as wave guides to microwaves and higher frequency electromagnetic


waves and optical solitons are able to carry information along single mode silica fibres at


multigigabit rates for distances greater than 9000 km, the width of the Pacific Ocean, with
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a bit error rate (BER) < 10�9, the international standard. Modern fibres have a very low


loss rate of < 1 dB km�1 and an effective area of � 30mm2. The electrical power involved


is very low and a total optical system is feasible including the amplifiers spaced along the


cable. This permits a simpler, faster and more easily maintained system than that using


conventional electronics. Research on optical solitons is world-wide but, for the English


reader, the work of Linn Mollenauer and his colleagues at the A. T. & T. Bell Labs, New


Jersey is the most accessible (see references).


Optical solitons have the normal sech2 intensity profile and their amplitudes are given by


sech wave function solutions to a non-linear Schrödinger equation (see Appendix, p. 555).


As with all solitons, optical solitons are produced by a balance between the competing


effects of dispersion and non-linearity but the non-linearity of optical fibres is a very


special case which contributes in a remarkable way to the maintenance of the soliton


profile.


The Kerr Optical Effect and Self-phase Modulation In some materials, including silica


fibres, the index of refraction for light of a given wavelength varies with the intensity of the


light. This is the Kerr optical effect, which is expressed by


n � n0 ¼ n2I


where n is the index of refraction for a light wave of intensity I (large enough for non-


linearity), n0 is the refractive index for a low amplitude wave of the same frequency and n2


is a constant equal to 3:2 � 10�16 cm2 W�1. The value of n2 is small but the area of a


single mode optical fibre � 10�6 cm2, so we must think in terms of megawatts per square


metre. Moreover, the effects of non-linearity build up over fibre distances of many


kilometres.


Since n2I is positive we have


n � n0 ¼ c
1


v
� 1


v 0


� �
> 0


so the phase velocity v of a high amplitude wave is less than v 0, the phase velocity of a low


amplitude linear wave of the same wavelength.


At a given wavelength this creates a phase retardation between the two amplitudes of


�� ¼ 2�


�
L n2 I


over a length L of the fibre. This phase retardation is obviously greater for the short


wavelength high frequency components of the pulse, Figure 15.9, than for the lower


frequencies and so in the high intensity central section of the pulse the higher frequencies


are shifted towards the tail of the pulse while the lower frequencies advance to the front.


This process is opposed by the dispersive properties of the fibre because at the


wavelength at which the solitons are centred; that is, � � 1:5 mm (1500 nm) the dispersion


is negative (anomalous) so that @v g=@� < 0, where v g is the group velocity.


Negative dispersion advances the trailing higher frequencies and retards the lower


frequencies, both in a direction towards the centre of the pulse, so the pulse sharpens
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towards a soliton sech2 shape, Figure 15.10, and in a loss-free perfect silica fibre the soliton


would maintain this shape indefinitely. In practice, the wavelength � � 1:5 mm is close to


the minimum of the loss versus wavelength behaviour of the fibre, which accounts for low


loss fibres of < 1 dB km�1. Optical amplifiers, which we shall discuss shortly, maintain the


shape of the soliton over very long distances but even without amplification a soliton can


travel several hundred kilometres along the fibre without changing its amplitude or shape.


This distance is called the soliton period, Figure 15.11, and is given by


z0 ¼ 0:322
�2c� 2


�2
vacD


¼ 0:39
� 2


D
at � � 1:55mm


where c is the velocity of light in free space, �vac is the wavelength in free space, � is the


full width at half the maximum value of the soliton and D is the group velocity dispersion


parameter of the fibre; that is, the change in pulse delay with change in wavelength per unit


of fibre length.


The units of � are picoseconds and experimental solitons are produced in the range 1–


50 ps. The units of D are picoseconds per nanometre per kilometre and experimental values


of D are � 10 ps nm�1 km�1. At D � 1 ps nm�1 km�1 a 50 ps pulse has a soliton period


z0 � 930 km.


high
frequencies
lag


low
frequencies
lag


Figure 15.9 In the Kerr optical effect the velocity of light at a given wavelength depends upon its
intensity. The high frequencies in the high intensity region of a soliton travelling in an optical fibre
suffer a phase retardation; the low frequencies are advanced


high
frequency
advance


low
frequency
lag


Figure 15.10 The effects of Figure 15.9 are reversed by the negative (anomalous) dispersion of the
optical fibre at the wavelength on which the soliton is centred. This sharpens the soliton pulse
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Experimental Aspects Experimentally, the solitons are produced by a mode locked laser


with an additional fibre arm in the feedback loop. As the laser builds up from noise the


initially broad pulses are considerably narrowed by passing through the fibre arm and then


reinjected back into the laser cavity, forcing the laser itself to produce narrower pulses.


This process is repeated until the pulses become solitons and are ready for injection, via


coupling, into the transmission system. The laboratory cable is a fibre spool � 75 km long


and the solitons are recirculated through this loop to travel distances > 10 000 km if


required.


A typical laser soliton source produces pulses of � 50 ps with a power � 0:5 mW at a


repetition rate of 2.5 GHz.


The Raman Effect This plays a very important role in optical soliton transmission. It


arises when molecules in a material absorb radiation and it involves the vibrational and


sometimes the rotational energy levels of the molecules. Figure 15.12 shows the vibrational


Soliton
period


c z0


Figure 15.11 A soliton can travel several hundred kilometres in an optical fibre without being
degraded in any way. This distance z0, is called the soliton period


∆υ


∆υ


υυ υ υυ−∆υ υ−∆υ


Virtual
state


Rayleigh
scattering


Raman effect
Stokes line


Raman effect
Anti-Stokes line


2


1


0


Figure 15.12 The Raman effect can degrade a soliton by transferring energy from its higher
frequency to its lower frequency components. Vibrational energy levels in the optical fibre absorb
higher frequency radiation � from the soliton which reabsorbs it at a lower frequency � ��� (Stokes
line). There are three possible processes. In Rayleigh scattering a photon returns to its original
vibrational energy level, the Raman effect provides a frequency change �� ¼ �1, where �� is the
frequency interval between vibrational energy levels
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energy levels in a molecule with 0 as the ground state. Suppose initially that the molecule is


in the energy level 1 and absorbs a photon of frequency � which raises it to an excited level


which may not be a stationary state. If the photon drops back to its original level the re-


radiated photon of frequency � is called Rayleigh scattering. However, selection rules also


allow vibrational level changes �� ¼ �1, where �� is the vibrational energy level


interval, so the photon may drop back into level 2 or 0. The re-radiated or scattered photon


will then appear at the frequencies � ��� (Stokes line) or � þ�� (anti-Stokes line).


The Raman effect can ‘degrade’ a single soliton via a process known as the ‘self-


frequency shift’. Here the vibrational levels of the silica fibre molecules absorb energy


from the higher frequencies in the soliton pulse and the scattered radiation acts as a Raman


pump for the lower frequencies in the pulse because the fibre provides a Raman acceptance


band over a broad frequency spectrum.


Indeed, although a power of 0.5 mW provides a stable single soliton, early experiments


showed that solitons with powers >1 W suffered from ‘self-frequency shift’ to such an


extent that the soliton initially narrowed but then formed smaller satellite solitons.


The Raman Effect and Optical Amplification Solitons can gain energy via the Raman


effect as well as lose it and this is the basis of amplification along an optical transmission


line. One method results in the line acting as its own distributed amplifier. Laser pumps


coupled into the line at regular intervals maintain the shape of a soliton by feeding in a


frequency higher than that of the soliton, the energy difference being very close to the


broad peak of the Raman gain band of the silica fibre. In Figure 15.13 the soliton


wavelength is � ¼ 1:5 mm and the lasers pump energy at � � 1:4 mm. The pumps can also


inject radiation in the counter-propagating direction, which helps to average out any effect


of pump fluctuations; the penetration of the amplifying beam along the fibre is also


enhanced. The intervals between the laser pumps are � 30 km which is a small fraction of


the soliton period z0 (� several hundred kilometres). In this way, the gain per interval is


kept low enough to avoid excessive amplification of noise.


A second method, Figure 15.14 uses lumped amplifiers in the form of short lengths


� 3 m of optically pumped fibres doped with a rare earth such as Erbium. Again, the


interval between these lumped amplifiers is � z0 the soliton period to keep the noise


amplification low. The lumped amplifiers are energized by laser diode chips and for an


input of � 10 mW a gain of 30–40 dB is obtained at the useful wavelengths. The power of


L X XL L


RGP    Raman Gain Pump


1470 nm−l ~


1560 nm−l ~


RGP


Figure 15.13 The transmission line acts as its own distributed amplifier when solitons accept
higher energy photons via the Raman effect from optical pumps located at short intervals (distances
� z 0, the soliton period). Excessive noise production is avoided by frequent low gain amplification
(see Mollenauer et al., 1986)
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these amplifiers is useful in multiplexing, the subject of the next section (see Desurvire,


1992).


Multiplexing This refers to the possibility of sending more than one channel of


information down a single fibre. In current transmission systems, non-linear interaction


causes severe interchannel interference but solitons are transparent to each other. They are


unaffected by collisions and do not interfere with each other.


In multiplexing, two channels along a single fibre are provided by solitons which are


polarized in planes perpendicular to each other.


Even more channels are possible with wavelength division multiplexing. Solitons of


different wavelengths have different velocities and analysis shows that in a system using a


chain of lumped amplifiers, adjacent WDM (wavelength division multiplexed) solitons


interact just as in a lossless fibre so long as the collision length (twice the length of a


soliton) is two or three times the amplifier spacing (Figure 15.15).


This implies that several multigigabit per second WDM channels spanning a wavelength


separation of 1 or 2 nm may be used in a single fibre.


   A—Erbium-doped amplifying fiber
OP—optical pump (l = 1480 nm)
   C—coils of transmission line


l = 1532 nm OP A A A


CCC


OP25 km 25 km 25 km


Figure 15.14 Solitons are now maintained by lumped amplifiers in the form of � 3 m lengths of
optically pumped fibres doped with the rare earth Erbium separating 25 km lengths of transmission
line. The interval between the low gain amplifiers � z0 (the soliton period) to avoid noise
amplification


A A A A


Collision length


A      Amplifier
         location


Figure 15.15 Wavelength division multiplexing is possible with solitons of different wavelengths
and velocities. These solitons do not interfere with each other so long as the collision length (twice a
soliton length) is two or three times the lumped amplifier spacing (see Mollenauer et al., 1990)
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In a conventional transmission line each channel must be isolated at the regenerative


amplifiers and separately processed but one amplifier can handle all soliton channels and


Erbium-doped amplifiers are powerful enough to do this.


Random Noise Effects and the Frequency Sliding Guiding Filter There are two main


sources of error which affect an optical soliton transmission system: fluctuations of pulse


energy and arrival time at the receiver. Spontaneous emission (noise) always accompanies


coherent Raman gain and at each amplifier, amplified spontaneous emission (ASE noise) is


added to a soliton which can change its energy and its central frequency in a random way.


The change of energy may affect the amplitude of a soliton and the accumulated effect may


reduce a soliton to such an extent that its intended arrival as a ONE in the bit system is


registered as a ZERO. Alternatively, amplified noise may register a ONE in a ZERO space.


This contributes to the bit error rate (BER) which must be kept below the international


standard of < 10�9.


The ASE change in the frequency of the soliton changes its velocity and therefore affects


its arrival time, throwing the pulse out of its proper time slot.


Amplitude and time jitter may be reduced by narrowing the bandwidth of the


transmission line (Mollenauer, 1994), using a narrow band filter at each amplifier. Each


filter is a low-finesse Fabry–Perot etalon ( p. 343), centred on the true frequency peak of


the soliton (Figure 15.16). A soliton whose frequency has been shifted from the filter peak


suffers a loss across the spectrum provided by the filter. This, together with the non-linear


effect which generates new frequencies, pushes the soliton back towards the filter peak. In


this way, the noise-induced frequency shift is returned to zero rather than being maintained


as it would in a broad-band transmission line.


Amplitude jitter is damped because a pulse with excess energy will narrow in time and


broaden in spectrum more than the average and will suffer a greater loss at each filter.


However, the soliton loss at each filter must be replaced at each amplifier by an excess gain


with a resulting growth in noise.


Mollenauer et al. (1994), found that even when the soliton source laser was not tuned


exactly to the filter peak frequency, the soliton was still guided rapidly on to the filter peak.


The filter peak frequencies were therefore gradually slid with distance so that the soliton


frequency followed the filters while the noise remained in its original frequency band and


Etalon filter


R = 9%


R > 9%


R = 9%


R > 9%


Soliton


Figure 15.16 Noise effects in an optical transmission line are reduced using a narrow band Fabry--
Perot etalon filter at each amplifier. The low finesse, R � 9%, of fixed frequency filters can be
increased, R > 9%, if the frequency of the filters is gradually shifted with distance along the line.
The soliton frequency has no difficulty in adjusting itself to this shift and noise is progressively
reduced (see Mollenauer et al., 1994)
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its growth was inhibited. This noise reduction allowed the etalon filters to be strengthened


to a higher finesse. Experiments with a soliton pulse width of � � 16 ps, D �
0:5 ps nm�1 km�1, amplifier spacing ¼ 26 km with one filter per amplifier, and a frequency


sliding rate of 7 GHz 10�3 km gave a net frequency shift over 9000 km (trans-Pacific


distance) of a few soliton bandwidths, i.e. 0.5 nm at � ¼ 1557 nm. Such a series of sliding


frequency etalon filters can operate over a range of wavelengths wide enough to allow


several channels of wavelength division multiplexing.


Problem 15.1
The properties of a stationary gas at temperature T 0 in a large reservoir are defined by c0, the


velocity of sound, h0 ¼ c pT 0, the enthalpy per unit mass, and �, the constant value of the specific


heat ratio. If a ruptured diaphragm allows the gas to flow along a tube with velocity u, use the


equation of conservation of energy to prove that


c2
0


� � 1
¼ � þ 1


2ð� � 1Þ c�2


where c� is the velocity at which the flow velocity equals the local sound velocity.


Hence show that if u1=c� ¼ M� and u1=c1 ¼ M s, then


M�2 ¼ ð� þ 1ÞM 2
s


ð� � 1ÞM 2
s þ 2


Problem 15.2
Using a coordinate system which moves with a shock front of velocity u 1, show from the


conservation equations that c� in Problem 15.1 is given by


c�2 ¼ u1u2


where u2 is the relative flow velocity behind the shock front.


Problem 15.3
Use the conservation equations to prove that the pressure ratio across a shock front in a gas of


constant � is given by


p2


p1


¼  � 	


1 � 	


where  ¼ � 2=� 1, the density ratio, and 	 ¼ ð� � 1Þ=ð� þ 1Þ.


Problem 15.4
Use the results of Problems 15.1 and 15.2 with the equation of momentum conservation to prove that


the shock front Mach number is given by


M s ¼
u1


c1


¼
ffiffiffiffiffiffiffiffiffiffiffiffi
y þ 	


1 þ 	


r


where y ¼ p 2=p1, the pressure ratio across the shock and 	 ¼ ð� � 1Þ=ð� þ 1Þ. Hence show that the


flow velocity behind the shock is given by


u ¼ c1ð1 � 	Þðy � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð1 þ 	Þðy þ 	Þ


p
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Problem 15.5
The diagrams show (a) a shock wave of pressure p2 and flow velocity u propagating into a stationary


gas, pressure p1, and (b) after reflexion at a rigid wall the reflected wave of pressure p3 moving back


into the gas behind the incident shock still at pressure p 2. Use the result at the end of Problem 15.4 to


show that the flow velocity ur behind the reflected wave is given by


ur


c2


¼ ð1 � 	Þð p3=p2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ 	Þð p3=p2 þ 	Þ


p
and since u þ ur ¼ 0 at the rigid wall, use this result together with the ratio for c2=c1 ¼ ðT 2=T 1Þ 1=2


to prove that


p3


p2


¼ ð2	þ 1Þy � 	


	y þ 1


where y ¼ p2=p1 and 	 ¼ ð� � 1Þ=ð� þ 1Þ.


Rigid
wall


Rigid
wall


p3


Ur


p2


p1


p2


u u


(a) (b)


Problem 15.6
Use Problem 15.5 to prove that the ratio


p3 � p 1


p2 � p 1


! 2 þ 1


	


in the limit of very strong shocks. (Note that this value is 8 for � ¼ 1:4 and 6 for � ¼ 5=3; compared


with the normal acoustic pressure jump of 2 upon reflexion.)


Problem 15.7
Equation (15.9) evaluates ux for u ¼ f ðx � utÞ. Obtain u t in a similar way and use this with equation


(15.9) to prove equation (15.8).


Problem 15.8
Burger’s equation u t þ uux � �ux x ¼ 0 where � > 0 is a special case. It has a second-order


dispersion term and is directly integrable. Show that u ¼ �2� x= transforms Burger’s equation


into the diffusion equation


@ 2 


@t 2
¼ �


@ 2 


@x2


For fluids, � is a measure of viscosity which dissipates excess momentum in non-linear waves.
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Problem 15.9
Show that uðx; tÞ ¼ 2	 2 sech2 	ðx � ctÞ is a soliton solution of the KdV equation


u t þ 6uu x þ ux x x ¼ 0 after calculating u t; ux and ux x x as shown in the text.


Problem 15.10
For small values of q, log ð1 þ qÞ � q. Show that values of uðx; tÞ near the base of Figure 15.5(a)


where uu x � 0 may be written


uðx; tÞ � 2
@ 2


@x2
e�2	ðx�ctÞ


and that this satisfies the dispersion equation u t þ ux x x ¼ 0 if c ¼ 4	 2.


Problem 15.11
Use the method of Problem 15.9 to show that uðxÞ ¼ �2	2 sech 2 	ðx � x0Þ is a solution of the KdV


equation u t � 6uux þ ux x x ¼ 0.


Problem 15.12
Prove equation (15.13) if u ¼ v 2 þ v x:


Problem 15.13
Verify equation (15.14) for uðxÞ ¼ v x þ v 2 and v ¼  x= .


Problem 15.14
Show that the wave function  ¼ A sech	ðx � x 0Þ where A is a constant satisfies Schrödinger’s


equation (15.15) when � ¼ �	2.


Problem 15.15
KdV equations are invariant to a Galilean transformation. Show that the transformations u ! u � �
where � is constant together with x ! x þ 6�t returns u t þ 6uu x þ ux x x ¼ 0 to its original form.


Problem 15.16
At time t ¼ 0 a high amplitude signal has a profile y ¼ a sin�x with @y=@t ¼ 0. Thereafter, it


propagates according to the non-linear wave equation


@ 2y


@t 2
¼ c2


0 1 þ "
@y


@x


� �
@ 2y


@x2


where " is a small positive constant.
Show that the time required for the leading edge of a positive signal to become infinitely steep is


given by


t ¼ 4=c 0"a�
2


Hint: Rayleigh’s method (Rayleigh, Theory of Sound, Vol. 2, Dover Press p. 35), shows the required


time to be the reciprocal of the maximum value of jdu=dxj where du is the relative phase velocity


between two points on the leading edge of a positive signal separated by a horizontal distance dx.


Note that waves propagate in the positive and negative x-directions.
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Appendix 1: Normal Modes, Phase
Space and Statistical Physics


The last line of the introduction to the first edition states that ‘it is the wide validity of


relatively few principles which this book seeks to demonstrate’. Here we apply that concept


to the relationship between normal modes which feature in most of the book, phase space


of the final chapter, and statistical physics.


Firstly, we wish to show that the expression for the number of normal modes per unit


volume in the frequency range � to � þ d� given on p. 253 as


dn ¼ 4�� 2d�


c3


is nothing more than the number of ‘cells’ of phase space per unit volume in the same range


� to � þ d� available to particles in a statistical distribution.


Moreover, we can easily convert this expression in the frequency � to one in the velocity


v, the momentum p ¼ mv or the energy E.


The particle may be a molecule in the classical Maxwell–Boltzmann distribution


(M–B), a fermion of half integral spin in the quantum Fermi–Dirac distribution (F–D) or


a boson or any other particle of integral spin in the quantum Bose–Einstein distribution


(B–E). Bosons are the messengers of the force fields in physics, e.g. the photon in the


electromagnetic field.


We shall see that each of these distributions is nothing more than the statement that


ni ¼ gi � probable occupation of the phase space cell.


Here ni is a number of particles in the distribution and gi is our expression 4�� 2 d�=c3 (or


its equivalent).


The expression for gi is common to all three types of distribution but the occupation


factor or relative probability of occupation depends on the way in which the particles are


allowed to distribute themselves.


Firstly, let us examine the various equivalent forms of gi. We write


gi ¼ gið�Þ d� ¼ 4�� 2 d�=c3
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as the number of phase space cells per unit volume in the frequency range � to � þ d�. For


a quantum particle (p. 415) the momentum p ¼ �hk ¼ h�=c where h is Planck’s constant, k


is the particle wave number ¼ 2�=� and c is the velocity of light, so


gi ¼ gið pÞ dp ¼ 4�p2dp=h3


is the number of phase space cells per unit volume in the momentum range p to p þ dp.


Note that 4�p2dp is the volume of the shell in momentum space between spheres of radius


p and p þ dp.


All particles in statistical distributions are required to be free particles, that is having


only kinetic energy with no potential energy interaction terms.


Thus, the energy of a particle E ¼ 1
2


mv 2 ¼ p2=2m where p ¼ mv, m is the particle mass


and v is its velocity. Now


p2 dp ¼ ð2m3Þ1=2
E 1=2 dE ¼ m2v 2m dv ¼ m3v 2 dv


so


gi ¼ giðEÞ dE ¼ 4�ð2m3Þ1=2
E 1=2 dE=h3


is the number of phase space cells per unit volume in the energy range E to E þ dE and


gi ¼ giðvÞ dv ¼ 4�m3v 2 dv=h3


is the number of phase space cells per unit volume in the velocity range v to v þ dv.


Although we used the phase space of _xx or v with x in our discussion of chaos, the phase


space of mv or p with x is much more commonly used in physics. The phase space of ð p; xÞ
reveals the significance of h3 in the denominators of gi. Consider the expression


4�p2 dpV=h3


where V is the total volume (not the unit volume) so that the numerator expresses the phase


space over the momentum range p to p þ dp and the volume V ¼ xyz of the system.


Heisenberg’s Uncertainty Principle, p. 416, tells us that �x�p � h, so we may write


ð�x�pxÞð�y�pyÞð�z�pzÞ as h3; that is, the ‘volume’ of a cell in ð p;VÞ phase space.


This volume is the smallest acceptable volume which a particle may occupy for it defines


the volume associated with a particle as


h


�p


� �3


� �3
DB


where �DB is the de Broglie wavelength of the particle (p. 412).


So gi measures the number of phase space cells each of ‘volume’ h3 per unit volume in


the range p to p þ dp. Each of these cells may or may not be occupied by a particle.


We now examine what we mean by a statistical distribution in order to find the probable


occupation of a cell. This occupation factor is different for each of the three distributions


M–B, F–D and B–E.
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We consider a system, say a gas, of N particles occupying a volume V and having a total


internal energy E. The macroscopic parameters E, V, N define a macrostate. The energy E


may be partitioned in many different ways among the N particles subject only to the


restrictions that E ¼
P


ni" i and N ¼
P


ni remain constant where " i represents the


energy levels available to the particles. The probability of a system being found in a


particular partition is proportional to W the number of ways of distributing the energy


among the particles to achieve that partition.


Each different way is called a microstate and each microstate has a priori the same


probability. Each microstate contributes to the statistical weight of a partition so that the


particular partition reached by the greatest number of ways has the greatest statistical


weight and is therefore the most probable. The most probable partition with W (maximum)


defines the equilibrium of the macrostate and is written � (EVN ).


It is here that we relate � (EVN) to the concept of entropy S. Entropy is a measure of the


disorder of a system which increases as the system tends to equilibrium. At constant


temperature and volume the internal energy E of the system may be written


E ¼ F þ TS


where T is the temperature, S is the entropy and the product TS is a measure of the energy


of the system locked in the disorder amongst the particles and not available for work. F is


defined as the Helmholtz free energy and measures the work which can be done by the


system at constant temperature. At best, in an ideal reversible thermodynamic process


the disorder energy TS remains constant, but in a natural or thermodynamically irreversible


process TS increases at the expense of F as E remains constant.


An isolated system in equilibrium with the most probable partition of its energy among


its particles represents a maximum of its entropy S and Boltzmann related S and � through


his expression S ¼ k log� where k is Boltzmann’s constant. Fluctuations from the


equilibrium position are very small indeed and log� is a very sharply defined function.


Calculating the value of W the statistical weight of a partition in order to find W


(maximum) ¼ � (EVN) for each of the three distributions is a mathematical exercise which


is straightforward and a little tedious but which fails to reveal the underlying physics.


We shall make these calculations at the end of this appendix but we adopt the procedure


of quoting the results below together with the forms in which we usually meet them. This


will raise questions the answers to which are not evident in the mathematical derivation


(Table A1.1).


For all three distributions the particles are identical and indistinguishable, the total


energy E and number of particles N are constant. There are no restrictions on the number of


particles having a particular energy in the M–B and B–E distributions but in the F–D


distribution, Pauli’s exclusion principle allows only one fermion per energy level (or two if


we include spin).


Note firstly that the occupation factor or relative probability of occupation for each


distribution includes the term e�þ�" i , where � and � arise as multipliers in the


mathematical derivation. The index of the exponential requires � to be the inverse of an


energy and the relevant term in the normal form of the Fermi–Dirac distribution suggests


that � is the ratio of two energies.
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In comparing the two columns of the table several questions arise:


1. Is � ¼ 1=kT?


2. What has happened to the � term in the normal form of M–B?


3. What is the physical significance of the � term?


4. What has happened to the � term in Planck’s radiation law?


In question 1 let us integrate by parts the expressionð
e��" dp ¼ ½ pe��"
p¼þ1


p¼�1 þ �


ð
p
@"


@p
e��" dp


where


" ¼ p2=2m


For "! 1 as p ! 1 the first term on the right hand side equals zero, leaving


1


�
¼


ð
p
@"


@p
e��" dpð


e��" dp


¼ p
@"


@p


the average value of


p
@"


@p


Table A1.1 The mathematical derivation for each statistical distribution in the left hand column is
compared with its more familiar form on the right


n i ¼ g i � occupation
factor Normal form


M–B n i ¼ g i �
1


e�þ�" i


n


N
¼ 4�p2dp


ð2�mkTÞ 3=2
e�p 2=2mkT


¼ g i e����" i ð p ¼ mvÞ


F–D n i ¼ g i �
1


e�þ�" i þ 1
nðEÞ dE ¼ 2:4�Vð2m3Þ1=2


E 1=2


h3
� 1


e ð" i�" FÞ=kT þ 1


B–E nð�Þ d� h� ¼ Eð�Þ d�


n i ¼ g i �
1


e�þ�" i � 1
¼ 2:4�� 2 d�h�


c3
� 1


eh�=kT � 1


Planck’s radiation law
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From the equipartition of energy


p
@"


@p
¼ p2


m
¼ kT ¼ 1


�


where kT is the average energy per particle.


In question 2 we note that the term e�� in M–B has been replaced by N=ð2�mkTÞ3=2


and that h3 has been lost from the denominator of gið pÞ dp. To explain this and its


consequences let us write not n per unit volume but np in the range p to p þ dp over all


V ¼ xyz as


np ¼ V4�p2 dp e�p 2=2mkT


h3


Then


N ¼
X


np ¼ V


ð1
0


4�p2 dp e�p 2=2mkT


h3


where the standard definite integral is well known to have a value of ð2�mkTÞ3=2
.


Thus


N ¼ Vð2�mkTÞ3=2=h3


Now the average particle momentum �pp ¼ m�vv where 1
2


m�vv 2 ¼ kT ð�vv is the most probable


velocity).


Hence


ð2�mkTÞ3=2 � �pp3


Thus, ðV=NÞ�pp3 replaces e�h3 and


e� ¼ V


N


�pp3


h3
¼ V


N


1


�3
DB


¼ Volume available to each particle


Volume associated with the thermal de Broglie wavelength of the particle


The value of e� ¼ 0:026 m3=2T 5=2 at a pressure of one atmosphere, where m is measured in


a.m.u. (O16 ¼ 16).


For air at STP e� � 106 so for the Maxwell–Boltzmann distribution


gi


n i


¼ e�þ�" i � 106 e" i=kT � 1


This states that there are many more states or cells available for occupation than there are


particles to fill them, so the probable occupation of each cell is very small. This defines a


classical distribution.
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For the Bose–Einstein gas He4 at 4 K and one atmosphere pressure e� � 7:5 so the gas


is not safely classical.


Although it is not strictly applicable, for electrons in a metal at 300 K, e� � 10�4 so the


classical description for the Fermi–Dirac case is totally invalid.


A distribution which is not classical is said to be degenerate. Note that for high enough


energies (temperatures) all three distributions become classical.


Before we examine the origin of � and its physical meaning let us note that a factor 2


appears in both the F–D and B–E distributions where each particle has two spin states for


each energy level which must be accounted for. In Planck’s radiation law these spin states


are equivalent to the polarization states of electromagnetic waves. Note also in Planck’s law


that Eð�Þ d�, the energy per unit volume in the frequency range � to � þ d�, is nð�Þ d�h�
where h� is the photon energy.


Turning to question (iii) on the significance of � we again use the expression S ¼ k log�
or � ¼ eS=k. Consider a system in contact with a large reservoir at constant temperature,


Figure A1.1, able to exchange both energy and particles with the reservoir. The


combination of reservoir and system is isolated and its energy E, volume V and total


number of particles N are all fixed and constant.


We ask ‘What is the probability of finding the system in a particular microstate with nj


particles having total energy " j?’ This will be proportional to the number of microstates in


the reservoir after nj and " j are supplied to the system.


The entropy equation with subscript R for reservoir becomes


SRðE � " j;N � njÞ ¼ SRðE;NÞ � " j


@S


@E


� �
NV


�nj


@S


@N


� �
EV


where we neglect higher terms in the expansion.


Elementary thermodynamics shows that


@S


@E


� �
NV


¼ 1


T
and


@S


@N


� �
EV


¼ ��
T


system


reservoir


T


Figure A1.1 When a system, surrounded by a large reservoir with constant N, V and E receives n j


particles and total energy " j from the reservoir, the entropy change of the reservoir is �S ¼
ðn j�� " jÞ=T where � is the chemical potential
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where � is called the chemical potential. The chemical potential � is the free energy per


particle lost when the entropy S is increased in the relation E ¼ F þ TS where E is


constant. Thus, the entropy change may be written


�S ¼ SRðE � " j;N � njÞ � SRðE;NÞ ¼ � " j


T
þ nj�


T


Because the statistical weight � (EVN) represents the probability of a partition, the


probability of the combination of two partitions may be written as the product of their


statistical weights so we have


�ðE � " j;N � njÞ ¼ �ðE;NÞ�ð" j; njÞ
¼ �ðE;NÞ e�S=k


¼ �ðE;NÞ e ðn j��" jÞ=kT


In order to show the relation between � and ��=kT , we take as an example a system of


four fermions available to occupy any of four single particle energy states "1, "2, "3, "4


(Table A1.2). The particles and energies are supplied by the reservoir and each energy level


may be filled or empty. The numbers of possible microstates of the system using 0, 1, 2, 3


or 4 particles are shown below together with their relative probabilities.


For any microstate in which a particular energy level is filled we can find another which


differs only in having that energy level empty.


Table A1.2 Distribution of four fermions among four single particle energy states with numbers of
possible microstates and their relative probabilities


No One Two Three Four
particles particle particles particles particles


Number of
microstates 1 4 6 4 1


Energy
level " 4 0 0 0 0 1


Energy
level " 3 0 0 0 1 1


Energy
level " 2 0 0 1 1 1


Energy
level " 1 0 1 1 1 1


n j¼0 n j¼1 n j¼2 n j¼3 n j¼4
" j¼0 " j¼" 1 " j¼" 1þ" 2 " j¼" 1þ" 2þ" 3 " j¼" 1þ" 2þ" 3þ " 4


Relative
probability
of micro-
state e ð0�0Þ=kT e ð��" 1Þ=kT e ½2��ð" 1þ" 2Þ
=kT e ½3��ð" 1þ" 2þ" 3Þ
=kT e ½4��ð" 1þ" 2þ" 3þ" 4Þ
=kT
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Thus, for example


Relative probability of finding "3 filled


Relative probability of finding "3 empty
¼ p


1 � p


¼ e ½3��ð" 1þ" 2þ" 3Þ
=kT


e ½2��ð" 1þ" 2Þ
=kT


¼ e ð��" 3Þ=kT


More generally


p


1 � p
¼ e ð��" iÞ=kT


so


p ¼ 1


e ð" i��Þ=kT þ 1
¼ ni


where ni ¼ gi�nni and �nni or the relative probability is the average occupation of a cell.


This is the Fermi–Dirac occupation factor and we can identify � ¼ ��=kT (the ratio of


two energies) where � is the chemical potential. For the Fermi–Dirac distribution �nni � 1


and Figure A1.2 shows �nni versus " for electrons in a metal at T ¼ 0 K.


Each energy level is occupied by one electron until the top energy level "F the Fermi


energy level is reached. At T ¼ 0 K the electron with "F is the only one capable of moving


to change the entropy of the system and we identify its free energy with that of the


chemical potential �. Note that, at "F for T > 0, �nni ¼ 1
2


and this is indicated by the dotted


curve at "F in the �nni versus " graph.


We may apply a similar procedure to particles obeying Bose–Einstein statistics where


there is no restriction on the number of particles ni in the energy level " i. If ni can take any


value, three identical bosons available to three energy levels ð"1; "2; "3Þ can form the


1


ni


F


∋ ∋


½


Figure A1.2 Occupation number �nn i versus energy " for electrons in a metal at T ¼ 0 K (solid line).
A slight increase in T permits the electrons near " F to move to higher energy levels (dotted curve)
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microstates (3, 0, 0) (0, 3, 0) (0, 0, 3) (2, 1, 0) (0, 2, 1) (1, 0, 2) (0, 1, 2) (2, 0, 1) (1, 2, 0)


(1, 1, 1). The energy of each microstate is given by " j ¼
P


ni" i with nj ¼
P


ni. Suppose,


as before, a large reservoir at temperature T surrounds a system to which it can supply


particles and energy.


We consider a particular microstate of the system with n1; n2; n3 . . . ni particles in the


various energy levels to have a probability p when ni ¼ 0.


If the system now takes ni particles each of energy " i from the reservoir the probability


of the microstate (now with ni 6¼ 0) is given by


p en ið��" iÞ=kT ¼ p en ix


where x ¼ ð�� " iÞ=kT .


The total probability for the microstate with ni ¼ 0; 1; 2; 3; . . . is


1 ¼
Xn i ¼1


n i ¼0


p en ix ¼ p


ð1 � e xÞ


because
P


en ix is a geometric progression.


Hence


p ¼ ð1 � e xÞ


The average value


�nni ¼
Xn i ¼1


n i ¼0


ni p en ix


But


X
ni en ix ¼ d


dx


X
en ix ¼ d


dx


1


ð1 � e xÞ ¼
e x


ð1 � e xÞ2


Therefore


�nni ¼
p e x


ð1 � e xÞ2
¼ ð1 � e xÞe x


ð1 � e xÞ2
¼ e x


ð1 � e xÞ


¼ 1


e�x � 1
¼ 1


e ð" i��Þ=kT � 1


The general expression for the Bose–Einstein distribution is therefore


ni ¼ gi�nni ¼ gi �
1


e ð" i��Þ=kT � 1


Finally we discuss the absence of � or ��=kT in Planck’s radiation law, noting that this is a


special case and that ��=kT is retained in other applications of Bose–Einstein statistics.
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Black body radiation is an equilibrium process, so that the system or cavity of a box of


photons is in equilibrium with the reservoir at temperature T, the entropy S is a maximum


and this process results from the continual emission and absorption of photons by the walls


of the cavity. The number of photons in the cavity is not conserved, the energy requirement


could be satisfied by a few high energy photons in the -ray region or by many photons in


the low energy infrared frequencies. This means that the occupation numbers are not


subject to the constraint which specifies the total number of particles in the gas.


Since N is not fixed, the entropy S of the reservoir is not affected by the nj photons in the


exponent nj� of the occupation factor for a given microstate; nj has no role and nj� ¼ 0


giving � ¼ 0.


The graph of the entropy S versus N, the total number of particles, gives low S values,


that is few microstates or particle arrangements at low N (-rays) and also at high N


(infrared) photons.


A typical microstate for -rays occupying the energy levels " i would read


n1 ¼ 0; n2 ¼ 0; n3 ¼ 0 with n!1 6¼ 0


and for infrared photons a typical microstate would read


n1 6¼ 0 n2 ¼ 0 n3 ¼ 0


Both of these are extremely unlikely and would contribute to partitions of low statistical


weight.


At equilibrium the maximum of the S versus N curve occurs at that value of N providing


the greatest number of microstates and here


@S


@N


� �
EV


¼ ��
T


¼ 0


again giving � ¼ 0.


Mathematical Derivation of the Statistical Distributions


The particles are identical but distinguishable by labels. All energy " states are equally


accessible and have the same a priori probability of being occupied. The statistical weight


or probability of a particular partition is proportional to the number of different ways of


distributing particles to obtain that partition.


Maxwell--Boltzmann Statistics


We start by filling the "1 states with n1 particles from the constant total of N particles. We


can do this in


N!


n1!ðN � n1Þ!
different and distinguishable ways.
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We now fill the "2 state with n2 particles from the N � n1 remaining particles. This


gives


ðN � n1Þ!=n2!ðN � n1 � n2Þ!


different and distinguishable ways.


Proceeding in this way for all remaining energy states we have


W ¼ N!


n1!n2!n3! . . .


as the number of different and distinguishable ways of choosing n1; n2; n3; . . . from the N


particles. Particles with the same " i may have gi differing amounts of angular momentum,


etc. This will give gi cells associated with " i in each of which a particle with " i may be


located. If gi is the probability of having one particle in the " i range of cells then


gi � gi ¼ g2
i is the probability of two particles in that range and gn i


i is the probability of ni


particles with " i being in that range.


Hence the total number of different distinguishable ways is


W ¼ N!gn 1


1 gn 2


2 gn 3


3 . . .


n1!n2!n3! . . .


The particles are distinguished by labels and if we now remove the labels and the condition


of distinguishable particles, we cannot recognize the difference in the partition when


particles are exchanged. Therefore all N! permutations among the particles occupying the


different states give the same partition with the total number of ways


W ¼ gn 1


1 gn 2


2 gn 3


3 . . .


n1!n2!n3! . . .


We now maximize log W with the constraints that


1. The number of particles N ¼
P


ni ¼ constant so that dN ¼
P


dni ¼ 0.


2. The energy E ¼
P


ni" i ¼ constant so that dE ¼
P


" i dni ¼ 0.


log W ¼
X


i


ðni log gi � log ni!Þ


where for large ni Stirling’s formula gives


log ni! ¼ ni log ni � ni


Hence


log W ¼
X


ni log
gi


n i


þ
X


ni


Mathematical Derivation of the Statistical Distributions 543







and


d ðlog WÞ ¼
X


dni log
gi


ni


� �
þ
X


ni d log
gi


n i


� �
þ
X


d ni


¼
X


dni log
gi


ni


� �
�
X


ni


dni


n i


ðbecause gi is constant and
X


dni ¼ 0Þ


¼
X


dni log
gi


ni


� �


If
P


dni ¼ 0 then ��
P


dni ¼ 0 and


if
P


" i dni ¼ 0 then ��
P


" i dni ¼ 0


where � and � are called Lagrange multipliers.


Adding these constraint conditions to d(log W) gives


d ðlog WÞ ¼
X


dni log
gi


ni


� �
� �� �" i


� �


Maximizing W gives d(log W)¼ 0 which, since all the coefficients dni are arbitrary and


independent, leaves


log
gi


ni


� �
� �� �" i ¼ 0


for each ni.


At Wmax we have therefore


ni ¼ gi �
1


e�þ�" i


Fermi--Dirac Statistics


We begin again with labelled identical particles. Here the Pauli exclusion principle


operates and no two particles may occupy the same state. The gi are quantum states, e.g.


spin gives a factor 2 to each gi. Also gi gives the maximum number of particles with " i so


ni � gi.


To fill the " i states with ni particles we put one particle in a gi cell and the next particle


in any of the ðgi � 1Þ remaining cells. We can do this in giðgi � 1Þ ways so the total


number of ways of filling the states of energy " i with ni particles is


giðgi � 1Þ . . . ðgi � ni þ 1Þ


¼ gi!


ðgi � niÞ!
If now the labels are removed and the particles become indistinguishable we reduce the


total of different distinguishable arrangements to gi!=n1!ðgi � niÞ!.
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Applying this to all gi gives the total number of different distinguishable ways as


W ¼ g1!


n1!ðg1 � n1Þ!
g2!


n2!ðg2 � n2Þ!
g3!


n3!ðg3 � n3Þ!


Maximizing log W with
P


dni ¼
P


" i dni ¼ 0 we proceed as with the Maxwell–


Boltzmann example to obtain for W (max) the condition that


log
gi


ni


� 1


� �
� �� �" i ¼ 0


to give


ni ¼ gi �
1


e�þ�" i þ 1


Bose--Einstein Statistics


Here there is no exclusion principle and we begin again with labelled identical particles.


The number of distinguishable arrangements of ni particles in the gi cells of energy " i


equals the number of ways of putting ni objects in gi boxes with any number allowed in a


box. This means putting ni particles in a row separated by gi � 1 walls so that the number


of ways is the number of permutations of ðni þ gi � 1Þ objects, i.e. particles and walls.


This gives ðni þ gi � 1Þ! ways. If we now remove the particle labels to make them


indistinguishable we reduce the number of ways by a factor of n! to give ðni þ gi � 1Þ!=ni!
ways.


However, all permutations of the gi � 1 dividing walls among the ni particles give the


same physical state, so the number of different distinguishable ways is given by


ðni þ gi � 1Þ!=ni!ðgi � 1Þ! and for all particles we have the number of ways


W ¼ ðn1 � g1 � 1Þ
n1!ðg1 � 1Þ


ðn2 þ g2 � 1Þ
n2!ðg2 � 1Þ � � � etc:


Maximizing log W as for the other two distributions gives d(log W)¼ 0 when


log
gi


ni


þ 1


� �
� �� �" i ¼ 0


that is, when


ni ¼ gi


1


e�þ�" i � 1
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Appendix 2: Kirchhoff’s Integral
Theorem


Kirchhoff’s Integral Theorem is valid for any solution E of the scalar time independent


Helmholtz equation (3), p. 187, that is


@ 2E


@x2
þ k 2E ¼ 0


For the radial direction r in a spherical coordinate system this becomes


@ 2E


@r 2
þ 2


r


@E


@r
¼ 0


which is satisfied by


E ¼ E0


r
eikr


where E0=r is the amplitude at a distance r from the origin O of a spherical


electromagnetic wave. We note that the amplitude of such a wave decays as 1=r where


r is the distance from O.


Kirchhoff’s Theorem states that the complex amplitude EP at a point P is related to the


complex amplitude E on a surface S enclosing P by


EP ¼ 1


4�


ðð
S


E
@


@n


e ikR


R
� eikR


R


@E


@n


� �
dS


where R is the distance from P to the surface element dS and n is the direction normal to dS
(Figure A2.1).


If r is the distance from O to dS, then


E ¼ E0


r
eikr


547


The Physics of Vibrations and Waves, 6th Edition H. J. Pain
# 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)







and


@E


@n
¼ E0


r
eikr ik � 1


r


� �
cos ðn; rÞ


The term ðik � 1=rÞ shows that inside S there is a phase shift of �=2 rad and an amplitude


factor 1=r. However, for r ¼ m�, where m is large, then


k ¼ 2�


�
� 1


r
¼ 1


m�


so that 1=r may be neglected for distances much greater than �.


Similar arguments hold for


@


@n


eikR


R


Thus, if P and O are many wavelengths from S, Kirchhoff’s integral becomes


EP ¼ �i


�


ðð
E0


e ikðrþRÞ


rR


ðcos n;R � cos n; rÞ
2


dS


where the cosine terms generate an inclination factor Kð�Þ and cosðn;RÞ ¼ cos�.


The problem of showing that Huygens wavelets on an unobstructed wavefront do not


propagate backwards reduces to that of demonstrating that Kð�Þ can be zero. This occurs


where


cos ðn;RÞ ¼ cos� ¼ �1


R


P


S


ds
rn


R


r


0


Figure A2.1 O is the origin of an electromagnetic wave. Kirchoff’s Theorem relates its complex
amplitude EP at a point P to the complex amplitude E on a surface S enclosing P
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and


cos ðn; rÞ ¼ cos� ¼ �1


This is achieved in the following way.


The surface S designated S2 now encloses a spherical wavefront surface S1 centre O. S1


and S2 are said to be doubly connected and the surface integral now includes S1 and S2


(Figure A2.2). At S1 the normal n to dS on S2 now points towards O and if the outer


surface of S2 is allowed to expand to infinity its contribution to the integral becomes zero.


This leaves only the integral over the surface where S1 and S2 coincide. The singularity


E0=r at O is excluded from the integral.


If P is now located on r, at P 0, that is in the direction of backward propagation of


Huygens wavelets, then


cos ðn;RÞ ¼ cos� ¼ �1


and


cos ðn; rÞ ¼ cos� ¼ �1


Kð�Þ is then equal to zero. Any other position for P gives


Kð�Þ ¼ cos�� cos ðn; rÞ
2


¼ 1 þ cos�


2


S1
S2


S2


R


r


n


0


P


P ′


Figure A2.2 When P 0 is located on r within the surface of the spherical wavefront S 1, situated
within S, EP 0 is reduced to zero proving that Huygens wavelets do not propagate backwards
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Appendix 3:
Non-Linear Schrödinger Equation


This equation describes phenomena in non-linear media with strong dispersion. It appears


in several forms. For optical soliton purposes, Mollenauer et al. (1982) derive it from the


equation


i
@u


@z
þ k1


@u


@t


� �
¼ �k2


2


@ 2u


@t 2
þ �juj2


u ðA3:1Þ


where


k1 ¼ @k


@!
; k2 ¼ @ 2k


@!2
; and � ¼ 1


2
k0


n2


n0


n2 and n0 appear in the Kerr Optical Equation n � n0 ¼ n2I.


Equation (A3.1) is satisfied by a pulse of the form


Eðz; tÞ ¼ uðz; tÞ e ið! 0t�k 0zÞ


Using the transformation of Mollenauer et al. (1980), (A3.1) assumes the dimensionless form


�i
@v


@�
¼ 1


2


@ 2v


@s2
þ jvj2v ðA3:2Þ


which has a soliton solution uð�; sÞ ¼ sech ðsÞei�=2 where


s ¼ T �1ðt � k1zÞ � ¼ jk2jT �2 z


and


v ¼ T
�


j k2 j


� �1=2


u


where T is a measure of the width of the input optical pulse.


The first term on the right hand of equation (A3.2) describes the effects of dispersion


which may be seen as the kinetic energy term in the linear Schrödinger equation, while the


second term corresponds to the energy of a self-trapping potential proportional to juj2


arising from the non-linear refractive index which may be interpreted in probability terms.
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Bessel’s functions, 381
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Bragg reflection, 447
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logistic equation, 469
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Criterion for dielectric-conductor


behaviour, 212


Cut off frequency, 95, 244, 355


Damped simple harmonic motion, 37, 41


critical damping, 40


dead beat damping, 39


logarithmic decrement, 44


oscillations, 41


rate of energy dissipation, 47


relaxation time, 45


De Broglie wavelength, 412, 534, 537


Debye theory of specific heats, 253


Decibel, 158


Degeneracy, 250, 425


Deviation by a prism, 312


by a lens system, 317, 322


Diffraction, Fraunhofer, 367


circular aperture, 379


far field, 383


rectangular aperture, 377


single narrow slit, 367


transmission grating, 373


Diffraction, Fresnel, 395


circular aperture, 401


Cornu spiral, 396


slit, 395


straight edge, 395


zone plate, 402


Diffusion equation, 187


added to wave equation, 190, 209


Dipole radiation, 362


Dirac d function, 292


Fourier transform, 292


sifting property, 292


Dispersion,


anomalous, 131, 522


normal, 130, 515


Displacement current, 201


Doppler effect, 141


shock waves, 506


Earthquake, 161


Eigenfrequencies, 86, 125, 245, 418


Eigenfunctions, 418


Electromagnetic waves, 199


in a conductor, 208


in a dielectric, 202


in the ionosphere, 227


in plasma, 223


Electron waves in solids, 441


Energy,


density in an electromagnetic wave, 208


distribution in a sound wave, 155


distribution in a velocity pulse, 278


in harmonic mode of a vibrating


string, 126


Evanescent wave, 256


Exponential series, 25


Fabry–Perot interferometer, 341


central spot scanning, 346


filter, 527


finesse, 345


free spectral range, 345


resolving power, 343


Fermat’s Principle, 307


Fermi energy level, 426, 540


Forced oscillator,


electrical, 55


mechanical, 57


power supplied to, 68


steady state behaviour, 58


string as a forced oscillator, 115


transient behaviour, 58, 74


Fourier Integral, 283


Fourier Series, 267


application to plucked string, 275


application to velocity pulse, 278


frequency spectrum of, 281


Fourier Transform, 285


application to Gaussian function, 289


application to optical diffraction (one


dimension), 287


application to optical diffraction (two


dimensions), 378, 379


application to slit function, 286


Fraunhofer diffraction, 367


Fraunhofer far field diffraction, 383


Fresnel diffraction, 395


Fresnel’s equations, 220


Group,


many components, 132


two components, 128


velocity, 109, 130


wave group, 128
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Heisenberg’s Uncertainty Principle, 135, 414


Helmholtz equation, 187


Helmholtz equation (optical), 313, 321


Holography, 403


Huygens wavelets, 305, 547


Impedance


characteristic of string, 117


characteristic of transmission line


(lossless), 175


characteristic of transmission line


(real), 186


conductor, 215


connection with refractive index, 220


dielectric, 207


forced oscillator (electrical), 55


forced oscillator (mechanical), 57


quarter wave matching, 124


specific acoustic, 158


Instantons, 521


Intensity of sound waves, 157


Interference,


amplitude division, 333, 334


dipole radiation, 362


linear array of N sources, 363


missing orders, 373


spatial coherence criterion, 360


two sources, 355, 357


Young’s slit experiment, 357


wavefront division, 333, 355


Interference fringes, 358


of constant inclination, 335


of constant thickness, 336, 355


Newton’s Rings, 337


visibility, 360


Interferometer


Fabry–Perot, 341


Michelson’s Spectral, 338


Resolving power, 343


structure of spectral lines, 340


Ionic crystal


infrared absorption in, 140


thermal expansion in, 463


wave propagation in, 138


Ionosphere, 227


Kerr optical effect, 522


Kirchhoff Integral Theorem, 547


Kronig – Penney model, 441


Lamé’s elastic constants, 159


Laser cavity, 347


Line spread function, 392


Lissajous figures, 19


Logarithmic decrement, 44


Mach Cone, 507


Mach number, 510


Magnification by spherical surface,


316


Magnifying glass, problem 328


Matrix applications


coupled oscillations, 86


lens systems, 325


multilayer dielectric films, 350


Maxwell’s equations, 202


Michelson’s spectral interferometer, 338


Michelson’s stellar interferometer, 386


Microscope, problem, 330


Modulation transfer function, 391


Multiplexing, 526


Newton’s optical equation, 320


Newton’s Rings, 337


Non-linear oscillations, 459


restoring force, 460


Non-linear waves, 505, 514, 515


Normal coordinates, 81


Normal frequencies, 81, 86


Normal modes, 81


one dimension, 81, 125


three dimensions, 250


two dimensions, 246


Normalization of wave functions, 423


Optical fibre wave guide, 353


Optical Helmholtz equation, 313, 321


Optical reflection and refraction,


217, 254, 307


Optical system, 313


Optical transfer function, 391


Oscillations


anharmonic, 459


coupled, 79


damped simple harmonic, 41


electrical relaxation, 465


finite amplitude, 459, 505


non-linear, 459


simple harmonic, 1
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Paraxial rays, 313


Partial differentiation (notation), 96,


107


Particle velocity, 109


Phase transfer function, 391


Phonons, 450


Pinch effect, 226


Planck’s Radiation Law, 251, 536, 541


problem, 262


Plasma, 223


Point spread function, 391


Poisson’s ratio, 159


Polarization, 17


Power (optical),


of one spherical surface, 314


of thin lens, 318


of two spherical surfaces, 317


Poynting’s vector, 206


Propagation constant, 185


Quality factor Q, 45


connection with Resolving Power, 377


of an oscillator, 70, 71


Radio transmission and reception, 229, 362,


366


Raman effect, 524


Reciprocal lattice, 452


Reduced zone scheme, 445


Reflection and transmission of waves at


a boundary


acoustic, 163


electromagnetic by a conductor


(normal incidence), 222


electromagnetic by a dielectric (normal


incidence), 217


electromagnetic by a dielectric


(oblique incidence), 218


electromagnetic (optical laws),


254, 307


electromagnetic (total internal), 256


on a string, 117


on a transmission line, 177


quantum particles at a potential


barrier, 419, 427


summary (table), 546


three-dimensional, 254


two-dimensional, 242


Relaxation time, 45, 214


medium, 214


oscillator, 45


Resolving Power


Bandwidth Theorem, 376


diffraction grating, 374


Fabry–Perot interferometer, 343


Rayleigh’s Criterion (optical


resolution), 375


Scattering


elastic, 447, 451


inelastic, 451


Schrödinger’s wave equation, 417


Separation of variables (method of),


245


Shock waves, 506


Simple harmonic motion, 1


Skin depth, 211


Snell’s Law, 256, 309


Solitons, 513


instantons, 521


KdV equation, 515, 517, 518


Kerr optical effect, 522


Miura’s transformation, 520


multiplexing, 526


non-linear waves, 514


optical, 521


Raman effect, 524


Rayleigh’s solution, 513


Schrödinger’s equation, 520


shallow water waves, 513


transparency in collisions, 518


Sound waves, 151


Spatial coherence criterion for


interference, 360


Standing wave,


energy in harmonic mode, 127


equation, 124


on a string, 124


ratio, 128


Statistical Physics, 533


black body radiation, 536


boson, 533


chemical potential, 539


distributions,


Bose–Einstein, 533, 536, 545


classical, 537
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degenerate, 538


Fermi–Dirac, 533, 536, 544


Maxwell–Boltzmann, 533, 536, 542


entropy, 535


equipartition of energy, 537


Fermi energy level, 540


fermion, 533


Helmholtz free energy, 535, 539


macrostate, 535


microstate, 535


phase space, 533, 534


Planck’s radiation law, 536


statistical weight, 535


Structure of spectral lines, 340


Superposition


many simple harmonic motions, 20


two perpendicular simple harmonic


motions, 15


two simple harmonic motions (one


dimension), 12


Telescope, problem 329


Telescope resolution of double star, 385


Thick lens, 320, 322


Thin lens, 318


Total internal reflection, 256


Transient effect in a forced oscillator, 58, 74


Transmission line, 171


as a Filter, 179


lossless, 173


real, 183


Umklapp process, 452


Uncertainty Principle, 414


Vector operator i, 53


Velocity


group, 109, 130


particle, 109


wave, 109, 114


Vibration insulator, 64


Visibility of interference fringes, 360


Wave, 108


current, 172, 174


dispersion of, 131


electromagnetic, 199


electron in solids, 441


energy density in, 126, 157


equation, 97, 110


evanescent, 256


function, 418


group


many components, 132


two components, 128


guide, 242, 353


in a periodic structure, 135, 162


intensity, 120, 157, 208


length, 113


longitudinal, 151, 159


mechanics, 411


non-linear, 505, 513, 514


plane, 109


progressive, 108


reflection at a boundary, 117, 163, 177, 217,


254, 546


standing, 124, 348


three-dimensional, 247


transmission at a boundary, 117, 163, 217,


254, 546


transverse, 108


two-dimensional, 240


velocity, 109, 113


voltage, 174, 175


Wave mechanics,


atomic clock, 431


electron waves in solids, 441


Fermi energy level, 426


harmonic oscillator, 438


one-dimensional potential well, 419


penetration of potential barrier, 430


potential step, 426


reflection and transmission of


quantum particles, 420, 427


Schrödinger’s wave equation, 417


square potential well, 434


three-dimensional box, 424


wave function, 418


zero point energy, 422, 438


Young’s modulus, 159


Zero point energy, 422, 438


Zone plate, 403
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